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ABSTRACT

The general circulation and the behavior of multiple jets and baroclinic eddies are described for an
atmosphere in which meridional potential temperature gradients and eddies are confined to a weather layer.
The weather layer is separated from the frictional lower boundary by a statically stable barotropic layer with
significant mass. Closure of the zonal momentum budget in the resulting circulation is achieved through
ageostrophic meridional cells that extend to the lower boundary, at which momentum is dissipated. In a
series of simulations with a multilevel primitive equation model, dynamic changes in the static stability of
the weather layer are found to be critical in determining the scaling of the baroclinic eddies, an effect not
captured in quasigeostrophic models. For simulations with a single jet in each hemisphere, the static stability
of the weather layer adjusts so that a significant inverse energy cascade to scales larger than the Rossby
deformation radius does not occur. The eddy length is found to scale with both the Rossby deformation
radius and the Rhines scale. Simulations with larger planetary radii and low pole-to-equator temperature
gradients exhibit multiple jets in each hemisphere. Eddy lengths and energies for the jet nearest the equator
in each hemisphere have the same scaling as those in the single-jet simulations. Similar scalings are found
for jets farther poleward but with different constants of proportionality that are consistent with more
supercritical eddies. The local eddy length is found to have only a weak variation with latitude, and the local
meridional jet spacing is found to scale with the local eddy length in all cases. Insights from the weather-
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layer simulations may be relevant to circulations in gas giant planets and the ocean.

1. Introduction

It is possible that on gas giant planets, baroclinic ed-
dies occur in a weather layer above a barotropic deep
layer (Williams 2003a,b; Ingersoll et al. 2004; Vasavada
and Showman 2005). This is in contrast to the much
studied case of Earth’s troposphere, in which baroclinic
eddies are active immediately above the planetary sur-
face. Current theories may be inadequate to describe
the equilibration of baroclinic eddies in a weather layer.
Theories and simulations based on quasigeostrophic
(QG) dynamics do not account for the feedback on
static stability from the eddy heat fluxes, a feedback
that can be expected to be important for eddy equili-
bration in primitive equation models (Gutowski
1985a,b; Zhou and Stone 1993). The theory of eddy
equilibration of Schneider and Walker (2006) is based
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on the primitive equations and does allow for modifi-
cation of the static stability by eddies, but the theory
relies on eddy-induced intersections of isentropes with
the planetary surface and is thus inapplicable to the
dynamics of a weather layer. The eddy length is found
to be important for the scaling of the interjet spacing in
circulations with multiple zonal jets (Panetta 1993; Lee
2005), and so the equilibration of eddies may be ex-
pected to have implications for the jet spacing in a
weather layer.

Here, in the absence of a theory of eddy equilibration
for a weather layer, we set out the phenomenology in
simulations with an idealized GCM. We document the
scaling of eddy lengths and energies in the weather
layer for a range of radiative forcings. Fundamental
questions to be answered include whether there is a
significant inverse energy cascade to length scales
larger than the length scale of maximum linear baro-
clinic instability. The length scale of maximum linear
baroclinic instability is given by the Rossby deforma-
tion radius, and an inverse energy cascade halted by the
beta effect would have an eddy length given by the
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Rhines scale (Rhines 1975; Vallis and Maltrud 1993).
We compare the scaling of the eddy length in the
weather layer to estimates of the Rossby deformation
radius and the Rhines scale. In the case of circulations
with multiple jets in each hemisphere, we examine the
meridional interjet spacing, as well as differences in the
scalings of eddy lengths and energies for the different
jets. We also examine the general circulation and zonal
momentum balance of the weather layer and the baro-
tropic layer beneath.

In addition to understanding the dynamics of the
weather layer for its own sake, a second goal of our
study is to further the understanding of the simulations
and theory of Schneider and Walker (2006), in which
baroclinic eddies are active directly above a lower
boundary with a significant temperature gradient (as on
earth). Schneider and Walker (2006) found that no sig-
nificant inverse energy cascade occurred to scales larger
than that of the linearly most unstable baroclinic wave,
corresponding to a state in which nonlinear eddy—eddy
interactions are not important in setting the eddy
length. The simulations of Schneider and Walker
(2006) differ from QG two-layer model dynamics
(which do allow an important role for eddy—eddy inter-
actions in setting the eddy length) both because the
static stability is dynamically determined and because
of eddy-induced intersections of isentropes with the
lower boundary (Schneider 2005). It is therefore inter-
esting to evaluate if the eddy equilibration is different
in a weather layer in which there are no eddy-induced
intersections of isentropes with the lower boundary but
in which the static stability is dynamically determined.

To simulate a weather layer, we have constructed an
idealized primitive equation GCM in which baroclinic
eddies are confined away from the lower boundary.
Radiative forcing is represented as Newtonian relax-
ation to a radiative equilibrium state with meridional
temperature gradients only in a weather layer overlying
a statically stable barotropic layer. We have performed
a series of simulations with the idealized GCM, varying
parameters such as the planetary radius and the meridi-
onal temperature gradient in radiative equilibrium. We
have obtained a wide variety of circulations with both
single and multiple jets in each hemisphere.

In our simulations of a weather layer, we do not at-
tempt to replicate the parameter regime of the gas giant
planets, or features such as their mean pole-to-equator
temperature difference, but rather focus on the dynam-
ics of the eddy equilibration in a weather layer in which
the static stability can respond to eddy fluxes. The dy-
namics of eddies in weather layers on gas giant planets
are more complicated than those considered here be-
cause there the eddies can derive energy from both
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differential solar heating and from convective heat
fluxes from the planetary interior (Busse 1994; Inger-
soll et al. 2000). In addition, we have a statically stable
barotropic layer rather than the statically neutral con-
vective interior expected on the gas giant planets
(Vasavada and Showman 2005). Our study of the
equilibration of baroclinic eddies in a weather layer is
complementary to the weather-layer studies of Wil-
liams (2003a,b), who investigated, among other things,
the effects on the circulation of different static stability
profiles and different depths of the barotropic layer.

Section 2 describes the idealized GCM, and section 3
describes the general circulation in a typical simulation.
Sections 4 and 5 discuss the scaling of the baroclinic
eddies, and section 6 discusses the meridional interjet
spacing in a series of simulations. Section 7 summarizes
the conclusions, and section 8 discusses further work
and the possible relevance of the simulations to gas
giant planets and the ocean.

2. Idealized GCM with weather layer

We use a dry idealized GCM based on the Geophysi-
cal Fluid Dynamics Laboratory (GFDL) dynamical
core, similar to that used by Held and Suarez (1994),
with standard earth parameters except where noted.
The lower boundary of the GCM is zonally symmetric,
uniform with no topography, and thermally insulating.
Subgrid-scale dissipation is represented by V® hyperdif-
fusion in the vorticity, divergence, and temperature
equations. The same vertical resolution is used in all
simulations, with 30 unevenly spaced sigma (o) levels.
The wind is damped near the lower boundary by Ray-
leigh drag with a damping coefficient decreasing lin-
early in o from 1 day ' at the lower boundary to zero
at o = 0.85.

Radiative forcing is represented as Newtonian relax-
ation of temperatures to a radiative equilibrium with
three horizontal layers joined using a smoothing func-
tion; see Fig. 1 for an example. The uppermost radia-
tive-equilibrium layer (0 < o < 0.2) is a statically stable
“stratosphere” with approximately constant tempera-
ture. The lowermost layer (0.6 < o < 1) is also statically
stable. The middle layer is the weather layer (0.2 < o <
0.6), in which the radiative-equilibrium temperature
distribution is modeled after that of Held and Suarez
(1994). The weather-layer potential temperature 6,, in
radiative equilibrium is given by

0, =0, + (A, — A, logo) cos’d, 1)

where ¢ is latitude and 6, = 260 K is the temperature
at the poles. The parameter A, controls the static sta-
bility, and A, controls the meridional temperature gra-
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F1G. 1. Radiative-equilibrium potential temperature (K). The
contour interval (CI) is 15 K. Figs. 1-9 are for the simulation with
A, =60 K, A, =2K, and twice Earth’s radius (though the radia-
tive equilibrium shown here does not depend on the planet ra-
dius).

dient. The radiative relaxation time is 1 day in the low-
ermost layer and 40 days elsewhere. A complete de-
scription of the radiative-equilibrium temperature
distribution and relaxation time distribution is given in
the appendix. The radiative equilibrium is statically
stable everywhere (approaching neutrality at the poles
in the weather layer), so that a convection scheme is not
needed. The static stability of the lowermost layer is
greater than that of the weather layer; this was found to
be necessary to confine eddy fluctuations to the
weather layer and prevent them from interacting with
the lower boundary. (A sufficiently strong increase of
density across a neutrally stratified lowermost layer
presumably would also prevent eddies from interacting
significantly with the lower boundary, but this would
require a lowermost layer extending over several den-
sity scale heights.)

A series of simulations was performed with different
A, and A, to examine the behavior of the eddy lengths,
energies, and jet spacings and to see if there exists a
regime in which eddy—eddy interactions play an impor-
tant role in setting the eddy length. The basic series of
40 simulations is at T42 horizontal resolution with A, =
30,60, ...,270 Kand A, = 2, 5, 10, 20 K. To allow for
multiple jets, we also include simulations with a planet
radius two and four times that of Earth, with horizontal
resolutions of T85 and T127, respectively, and A, = 2 K.
Simulations with twice Earth’s radius have A, values
ranging from 60 to 240 K. Simulations with four times
earth’s radius have A, values ranging from 90 to 240 K.
Results are averaged over 200 days after a statistically
steady state was reached for each simulation. Pole-to-
equator temperature differences in dynamical equilib-
rium are found to scale linearly with those in radiative
equilibrium, with a reduction in value from radiative to
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FIG. 2. Potential temperature (K). The Cl is 15 K. Fields shown
in Figs. 2-8 are based on zonal and time averages. For all statistics
presented, an average between the statistically identical Northern
and Southern Hemispheres has been taken.

dynamical equilibrium of approximately 25%. How-
ever, eddies render the weather layer significantly more
statically stable in dynamical equilibrium than it is in
radiative equilibrium (cf. Figs. 1, 2, and 3).

3. The general circulation of the weather layer

We discuss a typical simulation (Figs. 1-9) with twice
earth’s radius and radiative forcing parameters A, =
60 K and A, = 2 K. The radiative-equilibrium tempera-
ture distribution (Fig. 1) causes meridional potential
temperature gradients and baroclinic eddies to be con-
fined to the weather layer above a largely barotropic low-
ermost layer (see Figs. 2 and 4). The meridional gradient
of potential vorticity (PV) along isentropes is reversed in
part of the lower half of the weather layer, allowing for
baroclinic instability. The reversal of the PV gradient is
achieved through the meridional gradient in isen-

0.8

SR s

Latitude
FIG. 3. Change in buoyancy frequency (1073 s™!) between ra-
diative and dynamical equilibrium. Dashed contours indicate

negative values. The zero contour has been omitted. The CI is
15X 1073 s
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FIG. 4. Zonal wind (m s™!). The zero contour is marked with a

thicker line, and dashed contours indicate negative values. The CI

is2ms L.

tropic density, p, = —g '9,p, as can be inferred from
the contours of mean potential temperature in Fig. 2.
The vertical spacing of potential temperature contours
and thus the isentropic density increase poleward along
isentropes in the lower half of the weather layer,
whereas the isentropic density generally decreases
poleward along isentropes in the upper half of the
weather layer. The QG two-layer model thus more
closely resembles the weather layer than Earth’s at-
mosphere, in which the reversal of the PV gradient
occurs in the layer of isentropes that intersect the
surface (Schneider 2005). However, unlike in the QG
two-layer model, eddy heat fluxes affect the static sta-
bility, with an increase in static stability compared with
radiative equilibrium in the middle levels of the
weather layer and a decrease above and below these
levels (Fig. 3).

The transition from the weather layer to the barotro-
pic layer is not apparent in the Eulerian mass stream-
function, shown in Fig. 5, but is apparent in the mass

0.2 1
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0.6 1

0.8 1
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FIG. 5. Eulerian mass flux streamfunction (10° kg s~'). The zero
contour is omitted, and dashed contours indicate negative values.
The Clis 4 X 10° kg s~ .
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FIG. 6. Isentropic mass flux streamfunction (10° kg s™'). The

zero contour is omitted, and dashed contours indicate negative
values. The CI is 10" kg s~ 1.

streamfunction in isentropic coordinates, shown in Fig.
6. The isentropic streamfunction consists primarily of
one overturning cell in each hemisphere in the weather
layer and a series of ageostrophic cells in the lowermost
layer. Because there are no eddies near the lower
boundary, the isentropic mass flux streamfunction is
similar to the QG transformed Eulerian mean circula-
tion (not shown here) everywhere, unlike in Earth’s
atmosphere where they differ near the surface (Held
and Schneider 1999).

The Coriolis force on the meridional geostrophic
mass flux in an isentropic layer balances the form or
pressure drag on the layer (Andrews 1983), so that the
vertical integral of the meridional geostrophic mass flux
vanishes in the absence of surface pressure drag due to
topography at the lower boundary (Schneider 2007). In
our simulations, therefore, the geostrophic and ageo-
strophic circulations close individually, and we can de-
fine geostrophic and ageostrophic mass streamfunc-
tions individually by vertical integration of the geo-
strophic or ageostrophic meridional mass fluxes. The
resulting streamfunctions in Fig. 7 show that the merid-
ional mass flux in the extratropics is largely associated
with the geostrophic velocity in the weather layer and
with the ageostrophic velocity in the lowermost layer.
In section 4, we use the geostrophic mass streamfunc-
tion to define the dynamical weather-layer depth.

Multiple jets in each hemisphere occur for many
simulations, predominantly those with smaller pole-to-
equator temperature gradients and with planetary ra-
dius greater than Earth’s. The multiple jets are evident
in the zonal wind (Fig. 4) and in the vertically inte-
grated eddy momentum flux convergence (Fig. 8, right
axis). We will use the term “jet” to refer to local
maxima in the westerlies in the weather layer. These
zonal wind maxima are associated with westerlies at the
lower boundary and with a region of enhanced barocli-
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FIG. 7. Isentropic mass flux streamfunctions (10° kg s—!) related to (a) geostrophic and (b)
ageostrophic meridional mass flux. The zero contour is omitted, and dashed contours indicate

negative values. The CI is 10" kg s~ .

nicity (Panetta 1993) and eddy momentum flux conver-
gence. The eddy momentum flux convergence occurs
because the baroclinic eddies in the weather layer con-
verge zonal momentum into regions where they are
generated (cf. Held 1975, 2000; Simmons and Hoskins
1978; Ioannou and Lindzen 1986). Zonal momentum
balance is achieved by the ageostrophic meridional
cells, which extend to near the lower boundary, where
the Rayleigh drag acting on the zonal wind balances the
Coriolis force on the meridional flow (Ekman balance).
The vertically integrated eddy momentum flux conver-
gence shown in Fig. 8 (right axis) is equal to the stress
exerted by the atmosphere on the lower boundary and
is approximately proportional to the mean zonal wind
at the lower boundary. The ageostrophic cells may also
be viewed as the response required by the principle of
“downward control” to the eddy fluxes in the weather
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Fi1G. 8. Eddy length (solid line and left vertical axis) and verti-
cally integrated eddy momentum flux convergence (eastward
stress) (dashed line and right vertical axis) vs latitude. Eddy
lengths at latitudes within 10° of the equator are not shown.
Rhines scale (crosses) and Rossby first deformation radius
(circles) are shown at the three meridional eddy potential tem-
perature flux maxima used as reference latitudes. For ease of
comparison, the Rhines scale has been divided by a constant fac-
tor 0.62 corresponding to the slope in Fig. 11.

layer (Haynes et al. 1991). The streamfunctions of the
ageostrophic cells in the lowermost layer are of alter-
nating signs, consistent with Ekman balance at the
lower boundary and the alternating signs of the zonal
wind at the lower boundary, and the eddy momentum
flux convergence and divergence in the weather layer.

4. Eddy scaling for single-jet simulations

In all simulations, the global energy spectra show an
approximate n~> power-law range in spherical wave-
number n with no indication of an inverse energy cas-
cade to scales larger than the scale of baroclinic insta-
bility (Fig. 9). For simulations with a single jet in each
hemisphere, this is consistent with eddy energy residing
at the baroclinically most unstable wavenumber. Thus,
for single-jet simulations we expect the eddy length to
scale with the Rossby deformation radius, and we ex-
pect approximate equipartition between eddy available
potential energy and baroclinic eddy kinetic energy
(Held and Larichev 1996). For simulations with mul-
tiple jets in each hemisphere, the eddy lengths for each
jet must be examined individually.

100 4

—
<
n

Barotropic EKE (m2s-2)

1074

4 10 - 60
Wavenumber
F1G. 9. Barotropic eddy kinetic energy spectrum as a function of
spherical wavenumber n. The dashed line indicates an n~> power
law.
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We first discuss the simulations with a single jet in
each hemisphere. We examine the eddy lengths, ener-
gies, and a measure of the supercriticality to baroclinic
instability (Figs. 10-13). To evaluate the Rossby defor-
mation radius, Rhines scale, and eddy energies, we
need to define a reference latitude and appropriate av-
erages. The Coriolis parameter f and its meridional gra-
dient B are evaluated at the reference latitude, which is
chosen to be the latitude ¢,, of maximum eddy poten-
tial temperature flux v'6’ cos¢ at o = 0.5, where v’ and
0" are the eddy velocity and potential temperature. The
overbar indicates a zonal and time average, as well as
an average between the statistically identical Northern
and Southern Hemispheres.

Simulations with one eddy potential temperature flux
maximum in each hemisphere are considered to be
single-jet simulations, and, in general, the number of
jets is counted using the number of such maxima, ex-
cluding maxima within 4° latitude of the equator. Some
of the simulations have a subtropical jet in the weather
layer that is not associated with significant eddy mo-
mentum flux convergence or horizontal eddy tempera-
ture flux. Use of the eddy potential temperature flux to
identify jets, rather than the zonal wind in the weather
layer, avoids counting these subtropical jets, which we
exclude from our analysis.

a. Eddy length scale

To characterize the eddy length scale, we use the
energy-containing zonal wavenumber m,, calculated
from the zonal spectrum E,, of the vertically averaged
meridional velocity using the integral definition

Em Em

2_ _“mTm
72 b
>, m °E,,

e

m

@)
where the zonally symmetric wavenumber zero is ex-
cluded. Our choice of the exponent of m in the integral
definition gives an energy-containing zonal wavenum-
ber that is empirically found to be close to the wave-
number of the maximum of the zonal energy spectrum.
Length scales L and zonal wavenumbers m at a given
latitude ¢ are related by m = 27 a cos ¢/L.

The eddy length scale outside the tropics is shown for
one simulation in Fig. 8 (left axis). The eddy length
scale does not vary strongly with latitude, except in the
tropics where the integral definition (2) of energy-
containing wavenumber does not work well. Note that
in Fig. 8 the latitudes ¢,,, where the Rossby deforma-
tion radius and Rhines scale are evaluated, are dis-
placed equatorward from the corresponding maxima in
eddy momentum flux convergence. This is especially
true of the third jet from the equator, which is an atypi-
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cal example. We nonetheless use the eddy potential
temperature flux rather than, say, the eddy momentum
flux convergence to identify reference latitudes for the
jets because using the potential temperature flux gives
cleaner scaling results, especially for the single-jet simu-
lations.

For the comparisons below between Rossby defor-
mation radius, Rhines scale, and eddy length, we evalu-
ate the energy-containing wavenumber at the reference
latitude ¢,, and convert from length scales to zonal
wavenumbers also using the reference latitude ¢,,. We
use zonal rather than spherical wavenumbers for ease
of comparison with the simulations with multiple jets in
each hemisphere discussed in section 5, where eddy
lengths for different jets are needed.

b. Rossby deformation radius

We use the first Rossby deformation radius as an
estimate of the length scale of maximum linear baro-
clinic instability. The Rossby deformation radius is cal-
culated as L, = 27 (N,A,)/f, a scaling estimate of the
first baroclinic Rossby deformation radius, where A, is
the pressure difference over the weather layer. The
angle brackets denote an average taken horizontally
over a 6° latitude band about the reference latitude ¢,,
and vertically over the middle of the weather layer from
o = 0.35 to o = 0.45, following zonal and time averages.
The static stability parameter N, is defined by NIZ, =
—(p6) ' d,6 where p is the density and 6 is the potential
temperature (cf. Schneider and Walker 2006). We
use the geostrophic isentropic mass streamfunction
(Fig. 7a) to identify the top and bottom of the weather
layer, and thus via interpolation the pressure difference
A,,. The top and bottom of the weather layer at a given
latitude are identified as the levels at which the geo-
strophic isentropic mass streamfunction is 1/e times its
maximum value at that latitude.

The eddy length (energy-containing scale) scales with
the Rossby deformation radius (Fig. 10). As the merid-
ional temperature gradient is increased through
changes in the radiative parameter A, the static stabil-
ity is increased by the eddies, and the eddy length and
Rossby deformation radius increase. Since the dynami-
cal-equilibrium static stability is often much greater
than that given by the radiative equilibrium, the eddy
length is relatively insensitive to the radiative-equili-
brium static stability controlled by A,.

¢. Rhines scale

The beta effect inhibits nonlinear upscale transfer of
eddy energy, and a measure of the length scale at which
the beta effect becomes important is given by the
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F1G. 10. Energy-containing vs Rossby zonal wavenumber. In
Figs. 10-14, different plotting symbols denote sets of simulations
with different planet radii or values of the static stability at radia-
tive equilibrium, A_. Simulations with two and four times Earth’s
radius are labeled 2a, and 4a,. For each plotting symbol, there are
several simulations with different meridional temperature gradi-
ents at radiative equilibrium, A,,. Filled symbols indicate the jet
nearest the equator (the only jet for simulations with a single jet
in each hemisphere). Open symbols indicate the next jet pole-
ward. The dashed lines indicate linear relationships with zero in-
tercepts and slopes 1.0 and 0.52, corresponding to the first and
second jets poleward, respectively. The slopes of the dashed lines
were determined by least-squares fits of slope-1 lines to the loga-
rithms of the wavenumbers.

Rhines scale (Rhines 1975; Vallis and Maltrud 1993).
We define the Rhines scale as L, = 2 EKE"Y/B'?,
where EKE is the average of the barotropic eddy ki-
netic energy per unit mass over a 6° latitude band about
the reference latitude ¢,,,. The Rhines scale so defined
is a scaling estimate and can only be expected to be
significant to within a constant factor of order one.
We find that the eddy length also scales with the
Rhines scale (Fig. 11). In the simulations of Schneider
and Walker (2006), the eddy length was found to be
larger than the Rhines scale in a circulation regime in
which convection sets the static stability. There is no
convection scheme in the simulations presented here,
and the effect of the positive radiative-equilibrium
static stability is too weak to play the same role.

d. Supercriticality

The concept of a supercriticality that measures the
baroclinic instability of a flow has been useful for un-
derstanding both two-layer (Held and Larichev 1996)
and continuously stratified (Pedlosky 1979) QG mod-
els. Schneider and Walker (2006) found that a similar
supercriticality based on near-surface potential tem-
perature gradients was appropriate in characterizing
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FiG. 11. Energy-containing vs Rhines zonal wavenumber. Sym-
bols are as described in Fig. 10. The upper dashed line is a linear
fit using the same method as in Fig. 10, but using data points from
both jets, and has slope 0.62. The lower dashed line is shown for
reference and is chosen so that the ratio of the slopes of the upper

and lower dashed lines is the same as in Fig. 10.

the turbulence in simulated atmospheres with nonzero
surface potential temperature gradients. We have al-
ready discussed in section 3 how the reversal of the
mean PV gradient in the lower half of the weather layer
is similar to the reversal of the PV gradient in the lower
layer of a baroclinically unstable QG two-layer model.
This suggests that it may be appropriate to consider a
supercriticality analogous to that of the two-layer QG
model as a measure of the baroclinic instability of the
weather layer. We define the supercriticality of the
weather layer as

o o0
c BAU’

)

where the vertical potential temperature difference is
A, = —d,0 A,/2. The definition (3) should be under-
stood as a heuristic instability measure given the inex-
act analogy with the QG two-layer model. The mean
scaled temperature gradient —fd,0)/ is plotted against
the mean vertical potential temperature difference (A,)
in Fig. 12, which suggests that the supercriticality evalu-
ated in the middle of the weather layer remains of order
one. The static stability, as measured by A,, increases
with the meridional potential temperature gradient, re-
sulting in a constant supercriticality. Changes in the
latitude at which the Coriolis parameter and its gradi-
ent are evaluated are also important; neglecting this
variation in latitude would lead to considerable scatter
in Fig. 12, especially between simulations with different
planetary radii. This suggests that it is the supercritical-
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F1G. 12. Vertical potential temperature difference (A,) vs scaled
meridional temperature gradient —f (9,0)/B. Dashed lines repre-

sent constant supercriticalities of 3.8 and 5.4. Symbols and line-
fitting method are as described in Fig. 10.

ity rather than the isentropic slope that is dynamically
significant.

e. Eddy energies

The eddy available potential energy scales with the
baroclinic eddy kinetic energy (Fig. 13). The eddy avail-
able potential energy was calculated using the quadratic
approximation of Lorenz (1955) transformed to o co-
ordinates, and the energies per unit mass have been
averaged over a 6° latitude band about the reference lati-
tude ¢,,,. The equipartition of eddy energies is consistent
with there being no significant inverse energy cascade
beyond the scale of the linearly most unstable wave in
the single-jet simulations (Held and Larichev 1996).

5. Eddy scaling for multiple-jet simulations

For simulations with multiple jets in each hemi-
sphere, we consider the scalings of eddies for each jet
separately. Eddy lengths, energies, and the supercriti-
cality were evaluated using the definitions described in
section 4 but on a jet-by-jet basis.

The scaling of eddy lengths and energies and of the
supercriticality are the same for the jet nearest the
equator as for the single-jet simulations (Figs. 10-13).
For the next jet poleward, the eddy length also scales
with the Rhines scale in the same way, but the eddy
energies, Rossby deformation radius, and supercritical-
ity scalings are different. The eddy available potential
energy and baroclinic eddy kinetic energy are propor-
tional to one another, but with a different constant of
proportionality. Similarly, the eddy length and Rossby
deformation radius are proportional but with a differ-
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F1G. 13. Baroclinic eddy kinetic energy vs eddy available po-
tential energy. Dashed lines are EKE = 0.94 EAPE and EKE =
0.48 EAPE. Symbols and line-fitting method are as described in
Fig. 10.

ent constant of proportionality. The supercriticality is
again approximately constant for different radiative-
equilibrium temperature gradients, but it is greater
than for the first jet.

Results (not shown) for the third jet from the equator
show a continued trend. For example, the ratio of eddy
length to Rossby deformation radius is greater than for
the second jet from the equator. We restrict our analy-
sis to the first two jets nearest the equator in each hemi-
sphere for clarity of presentation and because there are
too few simulations with a well-defined third jet to
make the scalings clear.

The ratio of eddy available potential energy to baro-
clinic eddy kinetic energy, the ratio of eddy length to
Rossby deformation radius, and the supercriticality are
all greater for the second jet than for the first jet,
whereas the scaling of eddy length to Rhines scale re-
mains the same, suggesting that there may be an inverse
energy cascade beyond the scale of the linearly most
unstable wave for the second jet. Unfortunately, the
zonal energy spectra based on the meridional velocity
are noisy and do not confirm or contradict this hypoth-
esis definitively, especially given that only a short inverse
energy cascade without a proper inertial range could be
expected. The global energy spectra (Fig. 9) have signifi-
cant contributions from the eddy kinetic energy of all
the jets, including the jet nearest the equator, and so are
not definitive for the behavior of jets farther poleward.

6. Jet separation scaling

We present a jet-by-jet analysis of the meridional jet
spacing for simulations with two or more jets in each
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of the slopes of the upper and lower dashed lines is the same as in
Fig. 10.

hemisphere, where the number of jets is counted using
the eddy potential temperature flux maxima as in sec-
tion 4. We do this by associating with each jet a me-
ridional width defined as the distance between zonal
wind minima on either side of the zonal wind maximum
of the jet. Zonal wind minima and maxima are deter-
mined using the zonal wind at the lower boundary to
avoid considering subtropical jets that are not associ-
ated with significant eddy activity. Several simulations
with two or more eddy potential temperature flux
maxima do not have well defined jet widths by this
definition and are excluded from our jet separation
analysis, as are zonal wind maxima within 4° latitude of
the equator.

The energy-containing zonal wavenumber for each
jet is found to scale with the jet-spacing wavenumber
(Fig. 14) with a constant of proportionality of 0.84.
Thus, the meridional jet spacing is approximately given
by the eddy length, and this also holds for the third jet
from the equator when it exists (not shown). In our
simulations, the eddy length is typically constant over a
wide range of extratropical latitudes (cf. Fig. 8), and
thus we expect the meridional jet spacing to be rela-
tively constant over this range. This may be compared
with the jet spacing on Jupiter, which also does not
show a strong trend in latitude outside the tropics
(Porco et al. 2003; Smith 2004).

It may seem surprising that the jet spacing is of the
order of the Rossby deformation radius for the jet near-
est the equator where eddy—eddy interactions are not
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important in determining the eddy length, given that
the baroclinically most unstable wave has very large
meridional scale. It is possible, however, that even
weak eddy—eddy interactions can isotropize the eddies,
and Pedlosky (1975) showed that there is a secondary
baroclinic instability of the most unstable wave on the
meridional scale of the Rossby deformation radius.

7. Conclusions

We have examined the general circulation and the
scalings of eddy lengths and energies in weather-layer
simulations with both single and multiple jets in each
hemisphere. The zonal-mean circulation of the weather
layer in isentropic coordinates clearly distinguishes be-
tween the circulations in the weather layer and lower
barotropic layer. The isentropic mass flux streamfunc-
tion can be decomposed into geostrophic and ageo-
strophic parts (Fig. 7), with the geostrophic part (eddy
mass transport) being confined to the weather layer,
and the ageostrophic part extending to the region of
momentum dissipation near the lower boundary to
close the zonal momentum budget.

For the jet nearest the equator, we have shown how
changes in the thermal structure of the weather layer
involving changes in the static stability allow the super-
criticality to remain of order one. The eddy length was
found to scale with the first Rossby deformation radius
and the Rhines scale. For simulations with multiple jets
in each hemisphere, the supercriticality of the second
jet remains approximately constant for different radia-
tive forcings, but with a higher value than for the first
jet. Similar changes in constants of proportionality oc-
curred for eddy energy and Rossby deformation radius
scalings. The eddy length continues to scale with the
Rhines scale with the same constant of proportionality
as for the first jet. As in the case of the jet nearest the
equator, the static stability in the region of the second
jet is significantly increased in dynamical equilibrium
relative to radiative equilibrium (cf. Fig. 3). But the
latitude dependencies of the f/B factor in the supercriti-
cality and the radiative-equilibrium temperature distri-
bution mean that greater changes in static stability or
meridional temperature gradient are needed to achieve
a given supercriticality for the second jet compared
with the jet nearest the equator.

We have also examined the meridional jet spacing in
circulations with multiple jets in each hemisphere. The
local meridional jet spacing was found to scale with the
eddy length, and thus with the local Rhines scale. The
jet spacing and eddy length do not show a strong varia-
tion with latitude in our simulations (cf. Fig. 8), but this
may not be the case for weather layers with a greater
number of jets than in our simulations.
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The eddy equilibration of the weather layer can be
compared with eddy equilibration in simpler models
and with the baroclinic adjustment hypothesis (Stone
1978). In agreement with the simulations of Stone and
Branscome (1992) with a QG two-layer model, there is
a tendency for the isentropic slope in dynamical equi-
librium to be reduced compared with that in radiative
equilibrium, and the QG two-layer supercriticality is
close to constant, although greater than one. The be-
havior of the weather layer is closer to the two-level
model simulations of Zhou and Stone (1993) with dy-
namically determined static stability. Nevertheless, the
dynamical equilibrium of the circulations is not neutral
with respect to baroclinic instability, as would be pre-
dicted by the baroclinic adjustment hypothesis of Stone
(1978), and there are significant positive and negative
PV gradients at dynamical equilibrium.

A second goal of this study was to compare with the
simulations and theory of Schneider and Walker
(2006). The eddy equilibration is not sufficiently quali-
tatively different in the weather layer (at least for the
jet nearest the equator) to demonstrate that eddy-
induced surface intersections of isentropes are impor-
tant for eddy equilibration, although the effects of a
dynamically determined static stability are clearly im-
portant both here (cf. Fig. 12) and in Schneider and
Walker (2006).

8. Discussion and relevance to gas giant planets
and the ocean

The question remains whether there is a tendency in
the weather layer for eddy—eddy interactions to play a
more important role in setting the eddy length for jets
farther poleward. It may be the case that a consistent
local analysis for different jets of the sort attempted
here is not appropriate. For example, the link between
the length scales of the linearly most unstable modes
calculated globally for the weather layer and the simple
Rossby deformation radius used here is unclear a
priori. Approximations such as that of Wentzel-
Kramers-Brillouin-Jeffreys (WKBJ), which rely on
scale separation, may not be applicable because the
mean fields vary on the meridional jet scale, which is
comparable to the most unstable wavelength.

Several ways to resolve the issue include studying
larger or more rapidly rotating planets with more jets or
performing a linear stability analysis for the simulations
with multiple jets to determine the linearly most un-
stable wavenumbers directly. Simulations with a primi-
tive equation model in a channel on a beta plane may
also be instructive.
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a. Relevance to gas giant planets

To the extent that baroclinic eddies in a weather
layer play a role in the large-scale turbulence of gas
giant planets, the above results regarding the supercriti-
cality, eddy length and energy scalings, and the interjet
separation would be applicable. The more realistic case
of a deep barotropic layer that is statically neutral and
convecting remains as a subject for further study. The
relatively small depth of our barotropic layer may not
be a severe limitation insofar as increasing the depth of
the barotropic layer may not alter the circulation quali-
tatively other than to increase the vertical scale of the
ageostrophic circulation cells, as was found to be the
case in the weather-layer simulations of Williams
(2003a). Of course, our results are only appropriate for
the shallow part of the atmosphere where the tradi-
tional approximation (the thin-shell approximation
with a consistent simplification of the Coriolis force) is
valid.

To more closely link our simulations with the circu-
lations of gas giant planets, the zonal momentum bal-
ance must be more closely examined. In our simula-
tions, the eddy momentum flux convergence in the
weather layer is balanced by Rayleigh drag on the zonal
wind near the lower boundary. It is unclear what the
corresponding dissipation mechanism would be on a
gas giant planet. Such a dissipation mechanism is nec-
essary in the case of baroclinic eddies in the weather
layer, since if we remove the Rayleigh drag in our simu-
lations, eddy activity vanishes, a phenomenon known as
the barotropic governor (James and Gray 1986).

b. Relevance to the ocean

An analogy can be drawn between the baroclinic ed-
dies in the weather layer and mesoscale eddies in the
thermocline of the ocean. The lowermost layer of the
weather-layer simulation then corresponds to the abyss,
with Rayleigh friction near the lower boundary corre-
sponding to bottom drag. The eddies cannot be com-
pletely confined to the thermocline since the abyss is
nearly adiabatic, so that in the heat budget of the abyss
the ageostrophic circulation must be balanced by eddy
fluxes. However, the idea of a deep meridional cell ex-
tending to the region of significant bottom drag as a
means to close the zonal momentum budget is still ap-
plicable. The scaling of the eddy lengths and energies
for different jets and the importance of the adjustment
of the static stability should also be relevant to eddies in
the ocean.
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APPENDIX

Radiative-Equilibrium Temperature and Damping
Time Distributions

The radiative-equilibrium potential temperature 6 is
given by the combination of uppermost, weather, and
lowermost layers,

0=20,s,+ 0,1 —s5,+ 0,1 —5). (A1)

The smoothing functions are defined by s; = s(o, o))
and s, = s(o, 0,), where
“))

The weather-layer potential temperature 6, is given by
Eq. (1), while the uppermost- and lowermost-layer po-
tential temperatures 6, and 6, are given by

o —

1
s(o, 0,) = 5 [1 — tanh( 5

(A2)

eu = (Gp + Ah - Az lOg O-u)rz:K> (A3)

0,=0,—A,logr, (A4)

where k = 2/7 is the adiabatic exponent, 7, = min(o/0,,, 1),
and r, = max(a/ag;, 1). The use of the maximum and
minimum functions in the definitions of the effective
sigma levels r, and r, means that 6, and 6, are constant
in the weather layer and helps ensure that the weather
layer remains statically stable. The parameters used
were a polar temperature of 6, = 260 K, a transition
depth 6 = 0.07, the layer separation levels o, = 0.2 and
o; = 0.6, and a lowermost-layer static stability param-
eter A, = 50 K.

The radiative damping coefficient k was specified as

k= kuwsl + kl(l - sl)’

with 1/k,,, = 40 days, and 1/k, = 1 day. Thus, the damp-
ing time has the same value in the weather layer and
uppermost layer but is significantly shorter in the low-
ermost layer.
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