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S1 Details of microphysics schemes

Here we describe in further detail the different microphysics schemes used in this study.

Lin-hail

The Lin-hail microphysics scheme is based on Lin et al. (1983) as modified by the Goddard Cumulus
Ensemble Modeling Group (Tao and Simpson, 1993; Braun and Tao, 2000). It includes six classes
of water species representing water vapor, cloud water, cloud ice, rain, snow and hail. The size
distributions of the precipitating species (rain, snow and hail) are assumed to follow an exponential
distribution such that the concentration of particles of species i with diameter Di per unit size interval
is given by

n(Di) = n0i exp (−λiDi) . (S1)

Here n0i is the intercept parameter and λi is the slope parameter, defined by
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where ρ is the density, r is the mixing ratio and the subscripts refer to dry air (a), rain (r), snow (s)
and hail (h). Following Potter (1991), the density of liquid water ρr is used rather than the density of
snow when calculating λs. Some of the values of the particle densities and intercept parameters differ
from those used originally by Lin et al. (1983) and are given in table S1.

Based on the size distributions given above and an assumed form for the fall speed of each particle,
the mass-weighted fall speeds of each hydrometeor species Ui may be written,
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Here, Γ(·) is the gamma function, ρ0 is the dry air density at the surface, and the constants are defined
in table S1. The microphysical source and sink terms of each water species are calculated following
Lin et al. (1983) as modified by Braun and Tao (2000), and a saturation adjustment similar to Tao
et al. (1989) is applied to prevent supersaturation. Cloud water is assumed to have zero fall speed
relative to air, while cloud ice is assumed to fall at a uniform velocity of 0.2 m s−1.
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Lin-graupel

The Lin-graupel scheme is similar to the Lin-hail scheme, except that it includes graupel as one of the
frozen hydrometeor species instead of hail. The size distribution of graupel is defined by (S1), but it is
assumed to have a smaller density, ρg, and a larger intercept parameter, n0g, compared to that of hail
(table S1) and a different form for the mass-weighted fall speed given by (Rutledge and Hobbs , 1984),

Ug =
agΓ(4 + bg)
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where the slope parameter for graupel is defined,
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The functional form of the microphysical source and sink terms for graupel are identical to those of
hail in the Lin-hail scheme, but, because of the different density, intercept parameter and fall speed of
graupel, the magnitude of these tendency terms differ, even for identical environmental conditions.

Fixed-fall speed

The fixed-fall speed simulations described in section 5 use an altered form of the Lin-hail scheme in
which the fall speed of all hydrometeors are fixed to given values for the purposes of the precipitation
fallout calculation. However, the fall speed of cloud ice remains set to 0.2 m s−1, and the microphysical
source and sink terms are calculated based on the fall speeds as given by the original Lin-hail scheme.

Thompson

The microphysics scheme referred to as the Thompson scheme in this study is based on that of Thomp-
son et al. (2008). As with the Lin-based schemes, it includes six water species (vapor, cloud water,
cloud ice, rain, snow and graupel). However, unlike the Lin-based schemes, the Thompson scheme as-
sumes the size distributions of all hydrometeors except snow follow a generalized gamma distribution,
and it includes as prognostic variables the number concentration of cloud ice particles and rain drops
in addition to the mixing ratio of each water species. Thus, the Thompson scheme is a two-moment
scheme for cloud ice and rain water, and a one-moment scheme for all other condensate species1. In
addition, Thompson et al. (2008) allows for the distribution parameters of the hydrometeor species
to depend on their mixing ratio in an attempt to emulate the behavior of more comprehensive, fully
two-moment schemes (e.g., Morrison et al., 2005). In the simulations used in this study, we assume a
fixed number concentration of cloud droplets characteristic of maritime conditions of 100 cm−3.

S2 Condensation extremes in RCE

Here we analyze the scaling of instantaneous net-condensation extremes2 in the simulations in further
detail. We consider a decomposition of the net condensation similar to the scaling used by Muller
et al. (2011):

Ce = −�C

� zt

0

∂q∗

∂z
ρwe dz. (S3)

1In Thompson et al. (2008) only cloud ice is treated as two-moment, but in the implementation used in this study
rain is also included as a two-moment species.

2Considering condensation rather than net condensation (i.e., neglecting the contribution of grid boxes in which the
microphysical tendency of water vapor is positive) results in values of condensation extremes that differ by less than
three percent.
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Table S1: Parameters used in the Lin-hail and Lin-graupel microphysics schemes.

Symbol Description Value Units

n0r Intercept parameter for rain 8× 106 m−4

ρr Density of rain water 1000 kg m−3

ar Rain fall speed constant 842 m1−br s−1

br Rain fall speed exponent 0.8
n0s Intercept parameter for snow 1× 108 m−4

as Snow fall speed constant 12.4 m1−bs s−1

bs Snow fall speed exponent 0.42
n0h Intercept parameter for hail 2× 104 m−4

ρh Density of hail stones 900 kg m−3

CD Drag co-efficient 0.6
n0g Intercept parameter for graupel 4× 106 m−4

ρg Density of graupel particles 400 kg m−3

ag Graupel fall speed constant 19.3 m1−bg s−1

bg Graupel fall speed exponent 0.37

Here Ce is the 99.99th percentile of column net condensation, ρ is the air density, q∗ is the saturation
specific humidity, the over-bar represents a time and domain mean and zt is the height of the tropopause
(taken to be the level at which the lapse rate equals 2 K km−1). The vertical velocity profile we(z) is
calculated as the mean vertical velocity for points at which the column net-condensation rate exceeds
its 99.99th percentile. The integral in (S3) represents an estimate of the column net-condensation rate
derived from the dry static energy budget (see Muller et al., 2011). The derivation neglects storage,
horizontal advection and deviations from moist adiabatic lapse rates; the inaccuracies in the estimate
associated with these approximations are collected into the condensation efficiency �C so that (S3) is
exactly satisfied.

According to (S3), for a simple mass-flux profile with convergence near the surface and divergence
near the tropopause, net-condensation extremes follow CC scaling if the mass-flux profile and the
efficiency �C are invariant under warming. Deviations of net-condensation extremes from CC scaling
result from a more realistic mass-flux profile, or from changes in the mass-flux profile or condensation
efficiency with temperature. As discussed in Muller et al. (2011), the expression for the condensation
rate (S3) includes the vertical velocity within an integral weighted by the vertical gradient in saturation
specific humidity. This vertical gradient maximizes at the surface and decreases exponentially above,
which gives the low-level vertical velocity more weight in determining the condensation rate compared
to the vertical velocity at higher levels. As pointed out in section 4, the negative low-level changes in
we are thus an important negative influence on net-condensation extremes in our simulations.

In the Lin-hail simulations, the condensation efficiency �C decreases between 0.84 and 0.75 across
the intermediate-resolution simulations (Fig. S4), with the condensation efficiency behaving similarly
for simulations with the other microphysics schemes. However, the changes in �C depend on the precise
form of (S3) used. Muller (2013), used a slightly different approach in which the net-condensation
rate was estimated based on the vertical gradient of dry static energy rather than saturation specific
humidity. With this approach, the condensation efficiency �C does not decrease monotonically with
warming in the Lin-hail simulations. Regardless of the precise form of (S3) used, however, the frac-
tional changes in �C with warming are generally considerably smaller than fractional changes in the
precipitation efficiency �P defined in section 5.
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Figure S1: As in Fig. 2 but for high-resolution simulations using the Lin-hail microphysics scheme.
The larger sample size at this resolution allows daily accumulations (24 hr) to be also included.
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Figure S2: The 99.99th percentile of instantaneous column net-condensation rate as a function of
the mean temperature of the lowest model level (Ts). Simulations with Lin-hail (black), Lin-graupel
(thick-gray) and Thompson (dashed) microphysics schemes are shown. Thin gray lines are contours
proportional to the surface saturation specific humidity, and red-dashed lines are proportional to the
square of the surface saturation specific humidity; each successive line corresponds to a factor of two
increase.
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Figure S3: Mean vertical velocity profiles for columns in which the instantaneous column net-
condensation rate exceeds its 99.99th percentile. (a) Lin-hail simulations with mean temperatures
of the lowest model level (Ts) of 277 (black), 292, 298 and 309 K (orange). (b) Lin-graupel simulations
with Ts equal to 277 (black), 292, 298 and 308 K (orange). (c) Thompson simulations with Ts equal
to 277 (black), 292, 298 and 308 K (orange).
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Figure S4: Condensation efficiencies [�C ; defined in (S3)] and precipitation efficiencies [�P ; defined in
(1)] as a function of the mean temperature of the lowest model level (Ts). Results for simulations using
the Lin-hail (black), Lin-graupel (gray) and Thompson (dashed) microphysics schemes are shown.
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Figure S5: (a,b,c) Effective hydrometeor fall speed, vf (black), and effective fall speed of snow (blue),
rain (green) and hail/graupel (maroon) defined analogously to vf but only considering the specific
hydrometeor. (d,e,f) Fraction of total column hydrometeor mass comprised of each hydrometeor species
for columns in which the instantaneous precipitation rate exceeds its 99.99th percentile [colors same
as in (a)]. Lin-hail (left), Lin-graupel (center) and Thompson (right) simulations are shown.
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