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ABSTRACT: In idealized simulations of moist baroclinic instability on a sphere, the most unstable mode transitions from
a periodic wave to an isolated vortex in sufficiently warm climates. The vortex mode is maintained through latent heating
and shows the principal characteristics of a diabatic Rossby vortex (DRV) that has been found in a range of different simu-
lations and observations of the current climate. Currently, there is no analytical theory for DRVs or understanding of the
wave–vortex transition that has been found in warmer climates. Here, we introduce a minimal moist two-layer quasigeo-
strophic model with tilted boundaries capable of producing a DRV mode, and we derive growth rates and length scales for
this DRV mode. In the limit of a convectively neutral stratification, the length scale of ascent of the DRV is the same
as that of a periodic moist baroclinic wave, but the growth rate of the DRV is 54% faster. We explain the isolated structure
of the DRV using a simple potential vorticity (PV) argument, and we create a phase diagram for when the most unstable
solution is a periodic wave versus a DRV, with the DRV emerging when the moist static stability and meridional PV
gradients are weak. Last, we compare the structure of the DRV mode with DRV storms found in reanalysis and with a
DRV storm in a warm-climate simulation.

SIGNIFICANCE STATEMENT: Past research has identified a special class of midlatitude storm, dubbed the dia-
batic Rossby vortex (DRV), which derives its energy from the release of latent heat associated with condensation of
water vapor and as such goes beyond the traditional understanding of midlatitude storm formation. DRVs have been
implicated in extreme and poorly predicted forms of cyclogenesis along the east coast of the United States and the west
coast of Europe with significant damage to property and human life. The purpose of this study is to develop a mathe-
matical theory for the intensification rate and length scale of DRVs to gain a deeper understanding of the dynamics of
these storms in current and future climates.

KEYWORDS: Eddies; Extratropical cyclones; Instability; Potential vorticity; Diabatic heating;
Climate change; Quasigeostrophic models

1. Introduction

In small-amplitude calculations of moist baroclinic insta-
bility over a wide range of climates in an idealized GCM,
O’Gorman et al. (2018) found that the most unstable mode
transitions from a quasi-periodic wave to an isolated vortex
at a midlatitude surface air temperature of roughly 292 K.1

The structure of the vortex mode that emerged in warm cli-
mates (Fig. 1a) consists of a dipole of interlocking potential
vorticity (PV) anomalies above the boundary layer: cyclonic
in the lower free troposphere and anticyclonic in the upper
troposphere. Warm-air advection to the east of the cyclonic
anomaly and to the west of the anticyclonic anomaly leads to
ascent and diabatic PV generation from latent heat release in
the form of a dipole. We note that, because the mode is found

for warm-climate simulations, the diabatic generation extends
higher in the atmosphere than it would in the current climate.

The constellation of PV anomalies and diabatic PV genera-
tion is such that the anomalies are amplified and maintained
against the background shear flow. The resulting vortex mode
bears the principal characteristic of a diabatic Rossby vortex
(DRV) that has been found in a range of different simulations
and observation. Its emergence as the fastest-growing
mode within the moist baroclinic instability calculations of
O’Gorman et al. (2018) points to the profound modifying influ-
ence that latent heating has on the structure of fast-growing
disturbances in a warming climate.

DRVs first emerged as an alternative mode of instability in
idealized studies of moist baroclinic instability. The presence
of moisture greatly enriches the dynamics of unstable modes
because condensation and precipitation are strongly associ-
ated with ascending but not descending motion, and hence an
additional nonlinearity is introduced into the thermodynamic
equation (O’Gorman 2011). Emanuel et al. (1987) repre-
sented condensational heating in Eady and two-level semigeo-
strophic models by assuming saturated moist-adiabatic ascent.
This assumption leads to a nonlinear factor r(w) that is a func-
tion of the vertical velocity w and reduces the potential vortic-
ity [or static stability in quasigeostrophic (QG) models] by
a factor r , 1 in updrafts while leaving it unchanged inCorresponding author: Matthieu Kohl, mkohl@mit.edu

1 The most unstable modes were calculated in O’Gorman et al.
(2018) through repeated rescaling of perturbations to small ampli-
tude, assuming upward motion to be saturated, and using a basic
state equal to the zonal and time-mean of a fully nonlinear simula-
tion for that climate.
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downdrafts (r 5 1). While this parameterization is a simplifi-
cation, it captures the essential asymmetry that is introduced
through the irreversible fallout of condensate during precipi-
tation, and r may be calculated from the observed tempera-
ture and pressure distributions in the atmosphere. The effect
of this condensational heating was to increase the growth
rates and decrease the area of ascent of growing modes
with respect to dry waves, results that are borne out well by
moist baroclinic life cycle studies with shallow water models
(Lambaerts et al. 2012) or more comprehensive forecasting
models (Booth et al. 2015). When moist instability calcula-
tions were done with a more realistic reduction factor r(z)
that varied vertically, the short wavelength cutoff of the Eady
model disappeared (Whitaker and Davis 1994; Moore and
Montgomery 2004). A new mode of instability emerged at
shorter wavelengths that could intensify without the presence
of upper-level forcing (Montgomery and Farrell 1991, 1992;
Whitaker and Davis 1994; Moore and Montgomery 2004).
This mode now grew through the interaction of a surface
potential temperature anomaly and an interior PV anomaly,

rather than primarily through an interaction of anomalies of
potential temperature at the surface and lid, and the budget
of eddy available potential energy was dominated by diabatic
rather than baroclinic generation.

Subsequent three-dimensional simulations with a mesoscale
model by Moore and Montgomery (2005) showed that this al-
ternative diabatic growth mechanism could generate isolated
coherent PV-dipole structures consisting of a phase locked
low-level cyclonic anomaly and a midtropospheric anticy-
clonic anomaly starting from an initial moist baroclinic
environment without upper-level forcing. The isolated and di-
abatic character of such a growing disturbance without upper-
level forcing led Moore and Montgomery (2004) to classify it as
“diabatic Rossby vortex”}a term that we adopt in this paper.
More recently, idealized channel simulations of cyclone devel-
opment using a weather forecasting model (Tierney et al. 2018)
showed signs of breakup into “jagged diabatic” PV structures
reminiscent of a DRV at sufficiently warm temperatures, in
line with the results of O’Gorman et al. (2018). Going beyond
initial-value problems, turbulent simulations on a beta plane
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FIG. 1. Potential vorticity (PV) anomalies (shading) and diabatic generation of PV due to latent heating (contours)
for (a) the DRV mode at latitude 448 in a calculation of small-amplitude moist baroclinic instability on a sphere in
a warm climate (global mean surface temperature 311 K) using an idealized GCM (O’Gorman et al. 2018), and
(c) a DRV storm at latitude 618 in the corresponding macroturbulent (i.e., finite amplitude) simulation at statistical
equilibrium in the same GCM. (b),(d) As in (a) and (c) except that they show the generalized diabatic generation of
PV calculated according to Eq. (29), which includes both diabatic PV generation and diabatic vertical advection of
PV, where the only diabatic process considered is latent heating. The PV is calculated using the hydrostatic approxima-
tion to Ertel’s PV, and PV anomalies are with respect to the zonal mean. The contour interval is 9.23 1025 pvu h21 in
(a) and (b) and 0.07 pvu h21 in (c) and (d) (1 pvu5 1.03 1026 m2 s21 K kg21). The zero contour is not plotted. Note
that since the DRV mode in (a) and (b) was calculated using repeated rescaling of amplitude, the overall amplitude of
its fields is arbitrary.
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using moist two-layer QG or shallow water equations showed
a transition from a smooth large-scale jet flow to a jet flow
disrupted by the presence of small-scale vortices that rapidly
intensify through moist-dynamical feedbacks in the strongly
precipitating regime of the simulation (Lapeyre and Held
2004; Bembenek et al. 2020). In Bembenek et al. (2020) these
vortices were explicitly likened to DRVs. We have also found
growing DRVs in the fully nonlinear warm-climate simula-
tions of O’Gorman et al. (2018). An example of such a DRV
is shown in Fig. 1c, and it exhibits considerable similarity with
the DRV mode calculated by repeated rescaling to small am-
plitude (Fig. 1a), although the positive PV anomaly extends
higher into the atmosphere and the negative PV anomaly and
diabatic PV generation are more concentrated at the upper
tropopause.

DRVs have also been invoked to account for the initial
phase prior to explosive growth of certain cyclones in in oper-
ational analyses and realistic simulations. Both the European
extreme storm “Lothar” in 1999 (Wernli et al. 2002) and the
explosive East Coast winter storm in 2005 (Moore et al. 2008)
were shown to propagate and intensify moderately through
diabatic effects without upper-level forcing before intensify-
ing explosively through upper-level interactions in a second-
ary growth process. In this paper, we will remain focused on
the initial phase of diabatic self-amplification/propagation
without considering upper interactions. While the isolated
and vortical structure of the East Coast winter storm led
Moore et al. (2008) to classify it as a DRV following the ter-
minology of Moore and Montgomery (2004), the rapid propa-
gational character of Lothar, faster than the ambient winds,
led Wernli et al. (2002) to classify it as a “diabatic Rossby
wave” (DRW) with the positive diabatic PV generation to the
east of the low-level cyclonic PV anomaly playing the role of
meridional PV advection in a classic dry Rossby wave as dis-
cussed in Parker and Thorpe (1995). Both DRV and DRW
refer to the same phenomenon, but neither name is fully satis-
factory since such storms are isolated like vortices but propa-
gate through PV generation like a wave (Boettcher and
Wernli 2013). The upper-level negative PV anomaly is
found to be relatively weak in observed storms, and some
uncertainty exists in the literature as to when latent heating
leads to growth through interaction of the positive low-level
PV anomaly with a self-induced negative upper PV anom-
aly, or rather just leads to propagation of the low-level PV
anomaly. The importance of diabatic effects in individual
case studies of rapid cyclogenesis, led Boettcher and Wernli
(2013) to study DRVs more systematically by compiling a
10-yr (2001–10) climatology of DRV tracks for the North
Pacific and North Atlantic Oceans. DRVs occurred at an
average rate of 81 systems per year over the North Pacific
and 43 system per year over the North Atlantic. In line with
the case studies of Lothar and the East Coast winter storm,
DRVs in the current climate were found to propagate with
moderate intensification before interacting in a second
phase with a preexisting upper-level PV anomaly or jet
stream.

It is clear from the literature that DRVs constitute an
alternative diabatic growth mechanism that relies both on

sufficient baroclinicity and moisture and that produces rel-
atively small-scale modes that can self-amplify exponen-
tially even without the presence of upper-level forcing.
Currently, there is no theory for the growth rate and
length scale of DRVs or the wave–vortex transition that
occurs at higher temperatures in moist baroclinic instabil-
ity simulations. Analytically tractable models of dry and
moist baroclinic instability (Eady 1949; Charney 1947;
Phillips 1954; Emanuel et al. 1987; Zurita-Gotor 2005)
form much of the basis of our theoretical understanding of
cyclones due to their ability to isolate the mechanism of
cyclone formation in a conceptually simple model and to
relate growth rate and length scale of cyclones to atmo-
spheric parameters in a quantitative way. Given the im-
portance of diabatic effects in cyclogenesis both in the
current and future climate, it seems desirable to develop
an equivalent conceptually simple model for a DRV.

To this end, we introduce in this paper a minimal moist
two-layer QG model with tilted upper and lower boundaries
and show that it is capable of producing a DRV mode. Latent
heating is represented by an assumption of saturated ascent
in updrafts following previous work (Emanuel et al. 1987;
Fantini 1995; Zurita-Gotor 2005). We tilt the model bound-
aries at a slope equal to that of the mean isentropes to make
the two-layer model an analog of the interior of the Eady
model in which dry-baroclinic instability has been shut off but
any moist instability is retained. This allows us to transition to
a pure DRV solution within a conceptually simple model. We
note that this model is similar in spirit to the unbounded bal-
anced shear flow studied by Snyder and Lindzen (1991) to
demonstrate the possibility of growth through diabatically
generated interior anomalies in a setup that is dry modally
stable. However, Snyder and Lindzen (1991) allowed for neg-
ative latent heating in descent regions and so obtained peri-
odic wave solutions rather than an isolated DRV.

We begin in section 2 by formulating the tilted two-layer
model and showing that it produces a DRV mode. We then
study its PV budget and derive the dispersion relation of the
DRV mode analytically, a significant novelty of this paper.
Asymptotic solutions for the growth rate and ascent length of
the DRV are found in the limit of small r. We also solve the
dispersion relation for the infinite domain numerically by root
finding for the whole range of r. In section 3, we study the
emergence of DRV modes in the more general case that in-
cludes nonzero meridional PV gradients. We first introduce a
simple PV argument to explain the wave–vortex transition ob-
served to occur as latent heating becomes dominant in the
moist baroclinic instability simulations of O’Gorman et al.
(2018). We then generate a phase diagram for when the most
unstable mode in a partially tilted two-layer model is a peri-
odic wave versus a DRV as a function of the PV gradients
and r. In section 4, we compare the warm-climate DRV mode
and DRV storm from the idealized GCM simulations of
O’Gorman et al. (2018) with two storms in the present climate
that have previously been found to have the characteristics of
DRVs. Last, in section 5 we summarize our results and discuss
their implications.
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2. A simple model for a DRV

a. Model formulation

We seek a minimal model that can capture the internal
interactions of diabatically generated PV anomalies charac-
teristic of a DRV. We start from the moist quasigeostrophic
equations on an f plane:

­t∇2c 1 J(c,∇2c) 2 fwz 5 0 and (1)

­tcz 1 J(c,cz) 1
N2

f
r(w)w 5

N2

f
r(w)w, (2)

where c is the streamfunction, w is the vertical velocity, N2

is the constant static stability, f is the Coriolis parameter,
J(A, B) 5 AxBy 2 BxAy is the Jacobian, and (…) is a horizon-
tal domain average. Equations (1) and (2) are equivalent to
Eqs. (16) and (17) of Fantini (1995) except for the addition of
the term (N2/f )r(w)w on the right-hand side of the thermody-
namic equation [Eq. (2)], which acts as a spatially uniform
radiative cooling to ensure that the domain-mean tempera-
ture remains constant even though there is latent heating.
The effects of latent heating on the dynamics are encapsu-
lated in the spirit of simple moist theories (Emanuel et al.
1987; Fantini 1995) by the nonlinear factor

r(w) 5 r, w$ 0

1, w , 0
,

{
(3)

which reduces the static stability by a factor r in regions of as-
cent. Under an assumption of saturated moist-adiabatic ascent,

r 5
u

u∗
Cm

Cd

­u∗

­z

( )/ ­u

­z

( )

[see Eq. (7) of Fantini 1995], where u and u* are the potential
and saturated equivalent potential temperature, respectively,
and Cd and Cm are the dry-adiabatic and moist-adiabatic lapse
rates, respectively. The reduction factor in the ascent region
varies strongly in the vertical direction. In cyclones with

strong diabatic heating, r can go all the way to zero in the
interior and tend toward 1 as the tropopause is reached.
Averaged in the vertical direction, r 5 0.1 is a typical value
for the current climate and r 5 0.01 for the warm-climate
GCM simulations in O’Gorman et al. (2018). In physical
terms, the nonlinear factor r(w) represents the fact that while
moist ascending air releases latent heat upon condensation
and feels a locally reduced static stability, the descending air is
subsaturated (after irreversible fallout of condensate by
precipitation) and thus feels the full static stability. Moist
thermodynamics thus introduces an additional nonlinearity
into the equations that greatly enriches the dynamics.

We simplify the dynamics further by discretizing the equa-
tions in the vertical direction into two equal layers of height
(Fig. 2), anticipating that the two layers will be sufficient to
represent the PV-dipole structure of the DRV. We introduce
a barotropic streamfunction f 5 (c1 1 c2)/2 and a baroclinic
streamfunction t 5 (c1 2 c2)/2, where 1 refers to the upper
layer and 2 refers to the lower layer. The layer interface
height is h 5 2(f/g′)(c1 2 c2), with g′ 5 g(u1 2 u2)/u0
where g is the gravitational constant, u1 and u2 are potential
temperatures in each layer, and u0 is a reference potential
temperature.

We assume small perturbations about a basic state t0 5 2Uy
corresponding to a flow u1 5 2c1y 5 U in the upper layer and
u2 5 2c2y 5 2U in the lower layer. The small amplitude of the
perturbations allows us to linearize the advection terms, but the
thermodynamic equation remains nonlinear because of the latent
heating term.

The key novelty of our model is that we tilt the top and
bottom boundaries, h1(y) and h2(y), respectively, to have slopes
in the meridional direction of h1y 5 h2y 5 hy 5 2(2f/g′)t0y
so as to match the slope of the basic-state layer interface h

(Fig. 2b) in contrast to the standard untilted two-layer model
(Fig. 2a). This makes our two-layer model an analog of the in-
terior of the Eady model with zero meridional PV gradients
q1y 5 q2y 5 0 in the basic state. The dry modal instability
through interlocking Rossby waves is thus shut off, but any in-
stability solely due to the moist processes is retained. The equa-
tions for the perturbations about the basic state are derived in

FIG. 2. Schematic of the (a) untilted and (b) tilted two-layer model with basic-state interface height h, boundary
slopes h1y 5 h2y 5 hy, and basic-state PV gradients q1y and q2y. Also shown is the basic-state zonal mean wind profile
(the dot represents flow out of the page, and the cross represents flow into the page), which is the same for the tilted
and untilted models.
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appendix A in the limit of small-amplitude perturbations and
are given here in nondimensional form:

­tfxx 1 txxx 2 tx 5 0, (4)

­ttxx 1 fxxx 2 fx 1 w 5 0, and (5)

­tt 2 fx 1 r(w)w 5 r(w)w, (6)

where t, f, and w are now perturbations about the basic
state.2 We note that a dry two-layer model with sloping upper
and lower boundaries was already introduced by Bretherton
(1966) to allow independent variation of PV gradients and
vertical shear in an investigation of the short-wavelength cut-
off of baroclinic instability. Evidently, the reason for introduc-
ing the tilted boundaries here is different, as we are interested
in eliminating the basic-state PV gradients all together.

b. Numerical simulation

We first solve the tilted-model equations numerically to
isolate and study the fastest-growing mode for a given
static-stability reduction factor 0 # r # 1. To this end, we
discretize the equations using second-order central finite
differences in a periodic domain in x.

We integrate the barotropic and baroclinic vorticity
equations [Eqs. (4) and (5)] forward in time for the varia-
bles F 5 fxx and T 5 txx. Time stepping is performed with
MATLAB’S “ode45” function, which is based on an explicit
Runge–Kutta (4, 5) formula with an adaptive time step.

The system of equations is closed by calculating the vertical
velocityw at each time step from the nonlinear omega equation,

[r(w)w]xx 2 w 5 2fxxx 2 fx, (7)

which is formed by eliminating the time derivatives between
Eqs. (5) and (6). By using the omega equation, time stepping
of Eq. (6) is not needed. The nonlinearity in the omega equa-
tion arises from r(w) and requires an iterative approach to
finding the solution. We solve it iteratively at each time step
as [r(wn)wn11]xx 2 wn11 5 rhs, where n is the iteration step.
We start the iteration from a random guess for w to define the
initial r(w), and we iterate until the root-mean-square (rms)
of (wn11 2 wn) is smaller than 10212.

We start the time stepping from random initial condi-
tions for F and T. At each time step, we invert F 5 fxx and
T 5 txx to obtain f and t by imposing that f and t have
zero mean. We then solve for w using the iterative approach
to the omega equation described above, and we then update
F and T using Eqs. (4) and (5). We rescale the amplitudes of
the vectorsF and T by a factor of 100 each time rms (x). 10,
where x 5 (T, F), to avoid large numbers that could cause
problems with the numerical representation. We integrate un-
til the nondimensional time is t 5 200 when we find that the
solution has converged to a normal mode.

The vertical velocity (at time t 5 200) for r 5 0.01 is shown
in Fig. 3a where we have used a grid spacing of Dx 5 0.025
and a domain size of 8p. Remarkably, the solution evolves
into a DRV with a single spatially localized peak in vertical
velocity just like in the warm limit of the idealized GCM
calculations of O’Gorman et al. (2018, their Figs. 1f
and 2f). The isolated solution is in stark contrast to the spatially
periodic structure of moist baroclinic waves. The solution is ex-
ponentially growing and fixed in space because the basic-state
zonal wind is equal and opposite in each layer, but the DRV
would propagate zonally with a more realistic vertical wind pro-
file. We have repeated the calculations using a linear drag on
the relative vorticity in the lower layer with a damping time
scale of either 10 days (weak drag) or 2.5 days (strong drag).
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FIG. 3. (a) Vertical velocity, (b) PV anomalies (solid) and diabatic PV generation rate (dashed), and (c) total meridional winds (solid)
and meridional winds induced by PV anomalies in the same layer (dashed). All quantities are plotted vs x for the fastest-growing mode of
the tilted-model equations at r5 0.01, which is a DRV. In (b) and (c), quantities in the upper layer are shown in blue and quantities in the
lower layer are shown in red. The domain size is L 5 8p, and the grid spacing is Dx 5 0.025. All quantities are nondimensional, and the
overall magnitude of the DRV is arbitrary. The results in (b) and (c) have been zoomed in around the location of ascending motion to bet-
ter show the structure of the fields since the DRV occupies only a small fraction of the domain.

2 Equations (4) and (5) are identical to the two-layer moist QG
equations (Zurita-Gotor 2005) except for the addition of the terms
2tx and 2fx in Eq. (4) and Eq. (5), respectively, which arise be-
cause of the tilted boundaries, and except for the presence of the
mean radiative cooling term r(w)w in Eq. (6). Zurita-Gotor (2005)
studied the stability of moist waves by combining the equations
into a single equation for w in which case any mean radiative cool-
ing term drops out for an untilted model. We will see shortly, how-
ever, that the mean radiative cooling does not drop out when
forming thew equation for the tilted model.
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Isolated DRV solutions persist even with drag included, with
similar length scale but reduced growth rate relative to the de-
fault case with no drag (not shown).

We next analyze the PV dynamics of the DRV mode. The
PV budget in the lower layer was obtained by rewriting the
r(w)w term as r(w)w 5 w 2 [1 2 r(w)]w in the thermody-
namic equation [Eq. (6)], eliminating the w term using the
baroclinic vorticity equation [Eq. (5)], and adding the baro-
tropic vorticity equation [Eq. (4)] to give

­q2
­t

5 sq2 5 q2x 1 [1 2 r(w)]w 1 r(w)w, (8)

where q2 5 fxx 2 txx 1 t is the lower-layer PV, s is the growth
rate, q2x is zonal advection, and q̇2,diab 5[12 r(w)]w1 r(w)w
is the diabatic generation rate. A similar equation may be
derived for the upper-layer PV anomaly q1 5 fxx 1 txx 2 t,
which has diabatic generation given by q̇1,diab 5 2[12 r(w)]
w2 r(w)w. The DRV mode is made up of a positive PV anom-
aly in the lower layer and a negative PV anomaly in the upper
layer that are both growing through diabatic PV generation
(Fig. 3b). Note that meridional PV advection does not appear in
the PV budget because the meridional PV gradients are zero by
construction in the tilted model, but for completeness, we also
show the meridional winds (Fig. 3c). Exploration of the parame-
ter space of r shows that the basic PV structure remains similar
for all values of 0# r, 1, although the growth rate and horizon-
tal length scale of the ascent region do change when r is varied.
At r5 1 the system is dry and stable because there are no contri-
butions from latent heating, and by construction there are no me-
ridional PV gradients to otherwise support baroclinic instability.

We calculate the growth rate of the mode by assuming ex-
ponential growth of the rms of x 5 [F, T] over each time step
Dt to give s 5 log{rms[x(t)]/rms[x(t2Dt)]}/Dt. Note that
the time stepping is adaptive and the step size Dt can vary.
We then average s over the end period of the calculation
(t 5 195–200).

From Fig. 4 we see that within the narrow region of ascent the
growth of the positive PV anomaly is due to diabatic PV genera-
tion through latent heating that is partially offset by zonal advec-
tion. In the region of descending motion to the west, the PV
generation due to latent heating is zero and the growth of the PV
anomaly is due to zonal advection over a more extended spatial
scale. The PV tendency from radiative cooling is spatially cons-
tant with a value of r(w)w 5 20:011. In the region of descent to
the east, all the terms in the lower-layer PV budget are zero ex-
cept for the time tendency and the small term due to radiative
cooling. The PV budget in the upper layer is the same as in
the lower layer except that the signs of the terms are flipped
and they are mirrored about the axis of maximum ascent.

Now that we have isolated the DRV solution within a sim-
plified model, it is possible to develop analytical solutions for
its characteristics.

c. Analytic theory

We now derive the growth rate and horizontal length scale
of the DRV mode. In the modal regime, the DRV satisfies
the equations

sfxx 1 txxx 2 tx 5 0, (9)

stxx 1 fxxx 2 fx 1 w 5 0, and (10)

st 2 fx 1 r(w)w 5 r(w)w · (11)

We eliminate the streamfunctions and combine the equations
into a single equation for w:

(rw)xxxx 2 (2 1 s2)(rw)xx 1 wxx 1 (r 1 s2 2 1)w 5 rw,

(12)

as shown in appendix B. This equation is similar to the equa-
tion for w derived for moist baroclinic modes in an untilted
two-layer model [cf. with Eq. (12) in Zurita-Gotor 2005] ex-
cept for the two extra terms 22(rw)xx and (r 2 1)w on the
left-hand side of the equation and the radiative cooling term
r(w)w on the right-hand side, which is constant in space but
varies in time. As we will see shortly, the extra terms on the
left-hand side are responsible for producing exponentially de-
caying rather than periodic solutions in the descent area that
are characteristic of an isolated DRV.

We look for symmetric solutions about the peak in w since
that is what was obtained in the numerical solutions and since
the equation for w is symmetric under x → 2x. We put the
peak in w at x 5 0, and by symmetry we need only consider
the half of the domain x $ 0, where w is ascending between
0 # x # b and descending for x . b (see Fig. 5). Here b is the
location of the boundary between ascent and descent that
must be found as part of the solution.
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FIG. 4. Terms in the lower-layer PV budget vs x for the fastest-
growing mode of the tilted-model equations at r 5 0.01, which is
a DRV. The domain size is L 5 8p, and the grid spacing is Dx 5

0.025. The terms in the PV budget that are shown are the total ten-
dency (blue) and the contributions from zonal advection (red
dashed) and latent heating (black dashed–dotted). The PV ten-
dency from radiative cooling is a small constant with a value of
r(w)w 5 20:011 (not shown). All quantities are nondimensional,
and the overall magnitude of the DRV is arbitrary. The PV budget
has been zoomed in around the location of ascending motion since
the DRV occupies only a small fraction of the domain.
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Equation (12) is readily solved separately in the descending
and ascending region. In the descending region, the solution
is given by

w↓ 5
a
s2 1 d1e

2(x2b) 1 d2e
2s(x2b), (13)

where a5 r(w)w and we have discarded exponential solutions
that become unbounded as x→ ‘ assuming growing solutions
s $ 0. In the ascending region, the solution is symmetric
about x5 0 and is given by

w↑ 5
a

r 1 s2 2 1
1 c1 cos(k1x) 1 c2 cos(k2x), (14)

with wavenumbers

k1 5
1���
2r

√

3

�����������������������������������������������������������������������
1 2 r(2 1 s2) 1

����������������������������������������������
[1 2 r(2 1 s2)]2 2 4r(s2 1 r 2 1)

√√
(15)

and

k2 5
1���
2r

√

3

�����������������������������������������������������������������������
1 2 r(2 1 s2) 2

����������������������������������������������
[1 2 r(2 1 s2)]2 2 4r(s2 1 r 2 1)

√√
,

(16)

which are functions of r and s.
We define the domain half-size to be L and then take the

limit of an infinite domain L → ‘. Mass conservation ex-
pressed as

	L
0 wdx5 0 allows us to rewrite

a 5
1
L


L

0
rw dx 5

1
L


L

0
(r 2 1)wdx 5

1
L


b

0
(r 2 1)w↑ dx,

which implies that a → 0 as L → ‘ if we want solutions for
which b and w↑ remain bounded. We need additional con-
straints to determine the constants c1, c2, d1, d2, s, and b. We
impose that w↑ 5 w↓ 5 0 at x 5 b, continuity of (rw)x and
(rw)xx at x 5 b and mass conservation. The continuity condi-
tions follow from the continuity of f,t and the existence of
the derivatives in the governing Eqs. (9)–(11). The constraint
that w↓ 5 0 at x5 b gives

d1 5 2d2 2
a
s2 · (17)

Furthermore, the amplitude of the w solution is arbitrary,
which allows us to fix one of the amplitudes without loss of
generality. We choose d2 5 1 when s . 1 and d2 5 21 when
s , 1 to ensure that w↓ , 0. In the limit of L → ‘ and a → 0,
the resulting equations are

c1 cos(k1b) 1 c2 cos(k2b) 5 0, (18)

c1k1 sin(k1b) 1 c2k2 sin(k2b) 5 d2
s 2 1

r
, (19)

c1k
2
1 cos(k1b) 1 c2k

2
2 cos(k2b) 5 d2

1 2 s2

r
, and (20)

c1
k1

sin(k1b) 1
c2
k2

sin(k2b) 5 d2
s(s 2 1)
s2 1 r 2 1

, (21)

expressing w↑ 5 0 at x 5 b, continuity of [r(w)w]x, continuity
of [r(w)w]xx, and mass conservation, respectively. The limit
of L → ‘ and a → 0 in the mass conservation equation
must be taken carefully}a subtle point that is discussed in
appendix C.

Eliminating the constants c1 and c2, which also gets rid of
the arbitrary constant d2 (see appendix D), we obtain two
equations:

tan(k1b) 5
rk1k2
s 1 1

2
1
rk2

1
sk2

s2 1 r 2 1

( )
and (22)

tan(k2b) 5
rk1k2
s 1 1

2
1
rk1

1
sk1

s2 1 r 2 1

( )
, (23)

which along with the definitions of k1 and k2 [Eqs. (15)
and (16)] yield the dispersion relationship for the growth rate
s and half-ascent length b as a function of the static-stability
reduction factor r, a key novel result of this paper.

In general, this dispersion relationship needs to be solved
numerically, but in the limit of a convectively neutral stratifi-
cation r → 0 it is possible to show analytically that at leading
order the growth rate is

FIG. 5. Schematic of the solution of the w equation [see Eq. (12)]
for the DRV mode. For 0 # x # b we have ascending motion
w 5 w↑ . 0 and r , 1, and for x . b we have descending mo-
tion w 5 w↓ , 0 and r 5 1. Here, x 5 b is the location of the
boundary between ascent and descent that must be found as
part of the solution.
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s 5
1 1

��
5

√
2

5 1:62, (24)

and the half-ascent length is

b 5
p

2

��
r

√
, (25)

(see appendix E).3 For comparison, the growth rate s and
half-ascent length (equal to b for the DRV) for the fastest-
growing modes in an untilted dry two-layer model (Phillips
1954) and moist two-layer model (Emanuel et al. 1987) are
given in Table 1. Note that the half-ascent length is just one-
quarter of the wavelength for the dry mode and that the re-
sults in Emanuel et al. (1987) need to be rescaled by a factor��
2

√
to agree with our nondimensionalization. The DRV grows

about 4 times as fast as the dry wave and 1.5 times as fast as
the moist wave in the small r limit, consistent with the fact
that the DRV emerges as the fastest-growing solution in
the warm-climate simulations of moist baroclinic instability
in O’Gorman et al. (2018). The ascent length of the DRV and
moist wave are the same in the small r limit and are smaller
than that of a dry wave by about a factor of 15 for r5 0.01.

To obtain s and b for the full range of r, we solve the disper-
sion equations numerically. Equations (22) and (23) are solved
using MATLAB’S fsolve. We start by solving at r 5 1023 with
initial guess s 5 1.53 and b 5 0.06 for the first two values of r,
and we use linear extrapolation for the initial guesses at each
subsequent value of r. The results are compared with the
time-marching solutions of Eqs. (4), (5), and (7) for a finite
domain with periodic boundary conditions in Fig. 6, where we
use a larger domain L 5 32p with Dx 5 0.084 for all values of
r to resolve the large and weakly growing solutions as r → 1.
Note that the time-marching solution at r5 1 is not growing and
is not shown in Fig. 6. The growth rates from the time-marching
and dispersion-relation approaches are in good agreement
for values below a critical value of r 5 0.38, whereas the

ascent lengths are in good agreement only for values of r less
than roughly 0.2. A sample vertical-velocity profile at r 5 0.01
(Fig. 7) confirms that the w profiles from the time marching
and dispersion relations are in very good agreement at small r.
As the critical value of r5 0.38 is approached, the root-finding
solution for b tends to large numbers. For values of r . 0.38,
we only find solutions to the dispersion relation for which the
half-ascent length b , 0. These solutions are unphysical and
can be discarded.

In mathematical terms, the breakdown of the solution on
an infinite domain at r 5 0.38 can be traced to the point at
which s2 1 r – 1 5 0 and the right-hand sides of Eqs. (22)
and (23) diverge to infinity. Empirically we find that as this
point is approached both k1 and k2 also go to zero, such
that b → ‘ is needed to balance a diverging right-hand side.
Setting k1 5 k2 5 0 we obtain r 5 (3 2

��
5

√
)/2 5 0.38 and

s 5

��������������
( ��

5
√

2 1)/2
√

5 0.79 for the breakdown point in good

agreement with the numerical results. Beyond this point
s2 1 r 2 1 , 0, which implies from Eqs. (15) and (16) that
k2 becomes imaginary while k1 remains real. Hence, “tan”
in Eq. (23) switches to “tanh” while the right-hand side of
Eq. (23) becomes negative. To satisfy the equation for
growing modes, this requires b , 0, which is unphysical.

Thus, while DRV solutions continue to exist for r . 0.38 on
a finite domain with periodic boundary conditions, isolated
DRV solutions on an infinite domain cease to exist.

3. The role of meridional PV gradients and
the wave–vortex transition

So far we have discussed the emergence of DRVs in a moist
two-layer model with zero meridional PV gradients in which
PV is generated purely from diabatic effects. While such a
setup is a useful idealization for a DRV mode, we are inter-
ested in studying how the occurrence of DRVs generalizes to
a more realistic situation with PV gradients. We start by con-
sidering a qualitative PV argument for how the dynamics
changes as diabatic effects become dominant over meridional
PV advection, and we then extend our tilted two-layer model
to include meridional PV gradients.

TABLE 1. Comparison of the nondimensional and dimensional growth rate s and half-ascent length in two-layer models for the
most unstable dry wave (Phillips 1954), moist wave (Emanuel et al. 1987), and DRV. The half-ascent length is given by one-quarter
of the wavelength for the dry wave, and by one-half of the length of the region of ascent for the DRV and moist wave (for the DRV it
is b). Dimensional values for the growth rate [s(U/LD)] and ascent length (bLD) are calculated using typical scales LD 5 NH/(

��
2

√
f) 5

1000 km/
��
2

√
and U 5 10 m s21. The factor of

��
2

√
in LD follows from our choice of nondimensionalization. Growth rates for the moist

wave and DRV are presented in the limit of a convectively neutral stratification (r → 0). Half-ascent lengths for the moist
wave and DRV are presented as the small-r asymptotic expressions for the nondimensional results and are evaluated at
r 5 0.01 (representative of a warm climate) for the dimensional results, since the ascent length would be zero for r → 0.

Growth rate r → 0 Growth rate (day21) r → 0 Half-ascent length r ,, 1 Half-ascent length (km) r 5 0.01

Dry wave
��
2

√
2 1 5 0.41 0.50 p

2
������������
2

√
2 1

√ 1726

Moist wave 1.05 1.28 p

2

��
r

√ 111

DRV 0.5(1 1
��
5

√
) 5 1.62 1.98 p

2

��
r

√ 111

3 The dimensional growth rate for r → 0 is 1.62
��
2

√
Uf /(NH), and

the dimensional half-ascent length is p
��
r

√
/(2

��
2

√
) 3 NH/f, where H is

the depth of one layer and the vertical shear is 2U/H.
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a. PV dynamical perspective on the wave–vortex
transition

The transition from a periodic wave to an isolated vortex
mode in simulations of moist baroclinic instability in which dia-
batic effects become dominant can be interpreted elegantly
within the PV framework of a moist two-layer model (see Fig. 8).
Focusing on the lower layer (the upper layer is analogous), we
start from the initial condition of a PV wave train consisting of
positive and negative anomalies (Fig. 8a).

In a regime in which PV gradients are dominant, meridio-
nal advection of the negative background PV gradient in the
lower layer would generate a positive PV tendency to the east
of a positive PV anomaly, and a negative PV tendency to its
west. These advective PV tendencies give rise to a eastward

propagating Rossby wave that can phase lock and grow by in-
teracting with a counterpropagating Rossby wave in the upper
layer.

If instead we are in a regime in which the diabatic genera-
tion of PV is dominant, ascent to the east of a positive PV
anomaly causes latent heat release that generates a positive
PV tendency in the lower layer, whereas descent to its west
does not generate latent heating and thus there is no negative
PV tendency in the lower layer. Thus, only positive PV anom-
alies survive in the lower layer (with repeated amplitude

 Growth Rate
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FIG. 6. (a) Growth rate s and (b) half-ascent length b from the time-marching solutions of the tilted-model equations
[Eqs. (4), (5), and (7)] in a finite periodic domain L 5 32p with Dx 5 0.084 (solid red) and from the root-finding of the
dispersion Eqs. (22) and (23) for an infinite domain (dashed blue).
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FIG. 7. Comparison of the vertical velocity vs x for r 5 0.01 from
the time-marching solution [Eqs. (4), (5), and (7)] in a finite peri-
odic domain (solid red) and from the root-finding of the dispersion
relation [Eqs. (22) and (23)] for an infinite domain (dashed blue).

FIG. 8. A PV perspective on the transition from a periodic wave
to an isolated vortex in simulations of moist baroclinic instability.
Cyclonic PV anomalies are shown as red plus signs, and anticylonic
PV anomalies are shown as blue minus signs. Blue arrows illustrate
the direction of horizontal winds induced by the anomalies. Start-
ing from an initial condition consisting of (a) a wave train of PV
anomalies in the lower layer, (b) only positive anomalies survive
because of the asymmetry in diabatic generation. However, a series
of positive anomalies have weaker meridional flow between them
that leads to weaker diabatic PV generation as compared with an
isolated anomaly, and thus (c) one anomaly is a faster-growing
mode of the system.
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rescaling to calculate the growing mode) due to the asymme-
try in diabatic PV generation (Fig. 8b).

However, a series of positive PV anomalies have weaker
meridional flow between them (because of cancellation of the
induced flow from neighboring PV anomalies; Fig. 8b) as
compared with the meridional flow surrounding an isolated
single PV anomaly. Thus, one PV anomaly is a faster-growing
mode of the system when diabatic PV generation is dominant
over meridional PV advection (Fig. 8c).

b. Including PV gradients in the two-layer tilted model

A range of PV gradients can be easily included in our two-
layer model by tilting the top and bottom boundaries at variable
slopes h1y 5 a1 and h2y 5 a2. We retain the basic state t0 5 2y
(nondimensionalized) and f0 5 0 corresponding to a shear flow
in thermal wind balance. The perturbation equations around
this basic state are derived in appendix A and take the form

­tfxx 1 txxx 2
1
2
(a1 2 a2)fx 2

1
2
(a1 1 a2)tx 5 0, (26)

­ttxx 1 fxxx 2
1
2
(a1 2 a2)tx 2

1
2
(a1 1 a2)fx 1 w 5 0, and

(27)

­tt 2 fx 1 r(w)w 5 r(w)w,

(28)

with PV gradients q1y 5 12 a1 and q2y 5 211 a2.
We solve the equations numerically for given values of r,

a1, and a2 using time marching as in section 2b. We use a
domain size of L 5 8p, but to calculate solutions for a large
parameter space we use a larger grid spacing (Dx 5 0.13)
than before. We classify the most unstable solution as ei-
ther an isolated DRV (single local maximum in w) or a pe-
riodic wave (multiple local maxima in w) or stable. Local
maxima in w for which w , 0 are not counted. Cases that
are stable or very weakly growing (s , 0.09) are counted as
stable. The results of this classification are shown in Fig. 9
along with the growth rate s in Figs. 9a–c and half-ascent
length b in Figs. 9d–f.

We begin by focusing on the equally tilted case a1 5 a2 5 a

for which q1y 5 2q2y 5 1 2 a. We let 0 # a # 2, which in-
cludes the classic untilted regime with q1y 5 1 and q2y 5 21
at a 5 0, the no-PV-gradient regime q1y 5 q2y 5 0 from the
previous section at a 5 1, and a reversed-PV-gradient regime
q1y 5 21 and q2y 5 1 at a 5 2. For a , 1, a DRV emerges as
the fastest-growing solution when the magnitudes of the upper
and lower PV gradients are weaker than a threshhold qycrit of
roughly 0.7 such that q1y 5 2q2y , qycrit as shown in Fig. 9a.4

When instead the magnitudes of the upper and lower PV gra-
dients are greater than the critical threshold (q1y52q2y. qycrit),
the periodic wave emerges as the fastest-growing solution
for all values of r. For the cases with a . 1 in which the PV
gradients are reversed from their usual directions, a DRV is
the fastest-growing solution, but it is necessary for r to be suf-
ficiently low for the solution to be unstable, consistent with
the dry solutions (r 5 1) being Fjørtoft stable (Fjørtoft 1950;
Pedlosky 1964) because of the mismatch between the direc-
tions of the shear and PV gradients. Evidently, this mismatch
is also sufficient to inhibit the growth of the moist modes un-
less r is sufficiently low such that the dynamics is dominated
by latent heating. Overall, these results confirm that the emer-
gence of isolated DRV modes in the tilted model is not an ar-
tifact of having exactly zero PV gradients}although this is a
useful limit to consider for theory}but rather generalizes to
more realistic configurations that do include PV gradients.
Again, we have repeated the calculations using a linear drag
acting on the relative vorticity in the lower layer with a damp-
ing time scale of either 10 days (weak drag) or 2.5 days (strong
drag). The wave–vortex transition persists, with the precise
boundary largely unaffected by drag. Length scales are simi-
lar, but the growth rates are reduced (not shown).

Surprisingly, Fig. 9a suggests that the transition from wave
to DRV regime in the two-layer model with equal and oppo-
site PV gradients is independent of r (the boundary at qycrit is
entirely horizontal) but does rely on weakening or reversing
the PV gradients relative to the classic untilted two-layer
model. We investigate this result further by repeating the cal-
culations with PV gradients that are not equal and opposite,
but rather allowed to vary independently from each other, for
two example values of r (Figs. 9b,c). We observe that lowering
of r, as expected in a warmer climate whose stratification is
closer to moist adiabatic, does make a difference since it pro-
duces DRVs as the fastest-growing solution for a larger range
of PV gradients, particularly away from the diagonal line where
the PV gradients are exactly equal and opposite. We also recall
from the analytical solutions the existence of an upper bound on
r for DRVs to occur in an infinite domain when the PV gradients
are zero (Fig. 6). Overall, we find that both weak PV gradients
and weak moist static stability (small r) can favor DRVs.

4. Comparison with storms at finite amplitude

Our two-layer theory for DRV modes and the warm-
climate DRV mode in the idealized GCM calculation of
O’Gorman et al. (2018) are both based on an assumption of
small-amplitude disturbances. In this section, we analyze
DRV storms in reanalysis and a warm-climate simulation of
the idealized GCM to see how finite amplitude affects storm
structure. We are particularly interested in the question of
whether finite-amplitude effects can weaken the upper-level
anticyclonic PV anomaly and possibly lead to DRVs that
propagate but do not grow strongly because of the lower PV
anomaly not having a strong enough upper PV anomaly with
which to interact. Differences in the vertical structure of PV
anomalies are expected at finite amplitude for two reasons.
First, diabatic PV generation is weaker at finite amplitude in

4 Note that the solutions classified as DRVs at r 5 1 could in-
stead be considered to be waves. From the dry dispersion relation,
the wavelength of these most unstable dry modes becomes infinite
(not shown), and thus one maximum in w is found numerically in
the domain no matter how large of a domain is chosen. Note also
that the pure DRV solution with q1y 5 q2y 5 0 at r 5 0.9 is shown
to be stable but would grow weakly on a larger domain.
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anticyclonic regions, an effect that is captured in semigeo-
strophic models (Hoskins 1975; Emanuel et al. 1987). Second,
vertical advection of PV at finite amplitude can significantly
offset negative diabatic generation at upper levels because
positive PV anomalies at lower levels are advected upward.

We compare the structure of the warm-climate DRV mode
(Fig. 1a) with a finite-amplitude DRV storm in the same
idealized GCM and climate (Fig. 1c) and with two finite-
amplitude storms from reanalysis. The first storm from re-
analysis is the East Coast winter storm (Fig. 10a) that was
identified as a propagating and moderately growing DRV
by Moore et al. (2008). It later experienced explosive growth
through interaction with a prexisting upper PV anomaly, but
we consider the earlier diabatic phase. The second storm from
reanalysis is an example midlatitude summer cyclone (Fig. 10c)
from an updated version of the DRV climatology of Boettcher
and Wernli (2013) that is based on ERA5 reanalysis (Hersbach
et al. 2020). It was identified as a DRV by a tracking algo-
rithm, selecting for substantial baroclinicity, sufficient mois-
ture, fast propagation, and weak upper-level forcing. These
example storms are meant to illustrate some of the variations

in the constellation of PV anomalies and diabatic generation
in observed DRVs.

Ertel PV anomalies are defined with respect to a zonal
mean for the idealized GCM (using once-daily fields for the
mode and 6 hourly for the macroturbulent state) and with
respect to a 4-day moving average for the 6-hourly fields from
ERA5 reanalysis forecasts. The forecast mode is chosen
because it provides the temperature tendencies necessary for
the calculation of latent heating. The fields are first interpo-
lated from model to pressure levels, for both GCM and rean-
alysis fields, prior to calculating the PV and PV generation
rates.

In addition to considering the usual diabatic PV generation
rate, we also consider the diabatic source of PV in isentropic
coordinates according to Eq. (74a) in Hoskins et al. (1985):

Q̇diab 5 Q2 ­(u̇Q21)
­p

­u

­p

( )21

, (29)

which we refer to as the generalized PV generation. HereQ is
the potential vorticity, u is the potential temperature, u̇ is the
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FIG. 9. Phase diagram showing whether the most unstable mode of the tilted two-layer model is a periodic wave (blue) or a DRV (red)
or stable (white) for a setup where (a),(d) the PV gradients are equal and opposite in strength q1y 5 2q2y for multiple values of r and for
a setup where the PV gradients vary independently from each other and (b),(e) r 5 0.1 or (c),(f) r 5 0.01. Dashed lines in (a)–(c) show
the growth rate, and dashed lines in (d)–(f) show the half-ascent length b. The domain length is L5 8p, and the grid spacing is Dx5 0.13.
Note that the standard two-layer configuration has positive upper-layer PV gradient (q1y . 0) and negative lower-layer PV gradi-
ent (q2y , 0), which corresponds to the upper-left quadrants in (b), (c), (e), and (f).
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potential temperature tendency, and we have reexpressed the
vertical derivatives with respect to pressure rather than poten-
tial temperature. Equation (29) may also be written as

Q̇diab 5 Q
­u̇

­p
­u

­p

( )21

2 u̇
­Q
­p

­u

­p

( )21

, (30)

which shows that the generalized PV generation combines
diabatic PV generation (first term on the right-hand side) and
diabatic vertical advection of PV (second term on the right-
hand side).5 Including vertical advection of PV is important
because it can strongly offset diabatic PV generation (Büeler
and Pfahl 2017; Lackmann 2002; Mart́ınez-Alvarado et al.
2016; Stoelinga 1996; Persson 1995; Pfahl et al. 2015; Wernli
and Davies 1997), and its inclusion clearly improves the match
between the vertical structures of PV anomalies and PV

generation for the small-amplitude DRV mode in the ideal-
ized GCM (cf. Figs. 1a,b). In addition, considering diabatic
vertical advection as part of the diabatic source of PV makes
a closer connection to our QG theory in which the pseudo-PV
is not advected in the vertical.

We only consider diabatic effects due to latent heating. For
the idealized GCM, we have confirmed that there is no con-
vective precipitation in the region of the finite-amplitude
DRV storm, and u̇ was inferred from the large-scale conden-
sation tendency of specific humidity, which was saved as an
output field. For the reanalysis fields, u̇ was calculated from
the ERA5 temperature tendency from all parameterizations
in the forecast mode minus the contributions from longwave
and shortwave radiation. Radiative contributions to PV gen-
eration were separately evaluated and found to be negligible.

The finite-amplitude DRVs from reanalysis (Fig. 10) do not
extend as high in the atmosphere as the DRV in the warm cli-
mate of the idealized GCM, and this is as expected given that
they occur in the current climate in which tropopause is lower
and latent heating occurs lower in the troposphere. The gen-
eralized diabatic PV generation (contours in Figs. 10b,d) is
noticeably smaller in magnitude for the upper-level negative
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FIG. 10. The PV structure and PV generation rate due to latent heating of the (a),(b) 2005 winter storm (latitude
378 at 0000 UTC 25 Feb 2005) that was identified as a DRV in Moore et al. (2008), and (c),(d) an example summer cy-
clone (latitude 41.258 at 0500 UTC 10 Jul 2009) that was identified as a DRV in the climatology of Boettcher and
Wernli (2013). Shading shows PV anomalies with respect to a 4-day moving average (using 6-hourly fields). Contours
show (a),(c) the diabatic PV generation [the first term on the right-hand side of Eq. (30)] and (b),(d) the generalized
diabatic PV generation including both diabatic PV generation and diabatic vertical advection as in Eq. (29). In all
cases only diabatic effects from latent heating are included. Red contours are positive, and blue contours are negative,
and the contour interval is 0.44 pvu h21 for (a) and (b) and 0.10 pvu h21 for (c) and (d). The zero contour line is not
shown. All fields are calculated from ERA5 reanalysis, and PV is calculated using the hydrostatic approximation to
Ertel’s PV.

5 An alternative approach of including vertical advection of PV
in pressure coordinates (rather than diabatic vertical advection)
gives similar results except that there can be additional vertical ad-
vection of PV in the upper troposphere and stratosphere in re-
gions where latent heating is small.
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generation rates as compared with lower-level positive gener-
ation rates. From the point of view of Eq. (30), the magnitude
of diabatic PV generation is reduced in the upper anticylonic
region as compared with the lower cyclonic region in which Q
is larger, an effect that has been seen before in the context of
warm conveyor belts (Joos and Wernli 2012), and the nega-
tive diabatic PV generation is also offset by upward diabatic
advection of positive PV from the positive PV anomaly lower
in the atmosphere. Alternatively, from the point of view of
Eq. (29), the factor of Q2 tends to be much smaller in magni-
tude in anticyclonic regions as compared with cyclonic regions
of a finite-amplitude storm. As a result, the upper-level nega-
tive PV anomaly is weaker in magnitude than the lower-level
positive PV anomaly, especially in the case of the winter
storm in which it is difficult to clearly identify a negative
upper-level PV anomaly that is diabatically generated.

The reason the winter storm has a greater asymmetry be-
tween lower and upper PV anomalies as compared with the
summer storm seems to be because it is a stronger storm
(which emphasizes the finite-amplitude effects) but also be-
cause of more subtle effects related to its vertical profile of u̇
being more bottom heavy. The absence of a clear upper-level
negative PV anomaly in the winter storm may reduce its
growth rate at this point in its evolution, but further work
would be needed to definitively link the observed growth
rates and PV structures, especially given that moist baro-
clinic waves in the semigeostrophic Eady model have weak
upper-level negative PV anomalies but can still grow
strongly (Emanuel et al. 1987).

The finite-amplitude DRV in the warm-climate simula-
tion of the idealized GCM (Figs. 1c,d) shows some similari-
ties to the corresponding small-amplitude mode (Figs. 1a,b),
although the upper-level negative PV anomaly and the gen-
eralized diabatic PV generation are considerably reduced in
the storm relative to the mode for vertical levels between
300 and 500 hPa and the positive PV anomaly extends
higher, both as a result of diabatic vertical advection of PV.
Negative generation of PV is nonetheless strong in the
upper troposphere near the tropopause, and this seems to be
because of diabatic vertical advection up the mean vertical
PV gradient at those levels.

Overall, our analysis of finite-amplitude DRV storms shows
that finite-amplitude effects must be taken into account to re-
late the structure of PV anomalies and diabatic generation in
observed DRVs particularly for the upper-level PV anoma-
lies. Our results also show the value of combining diabatic PV
generation and diabatic vertical advection in a generalized di-
abatic PV generation diagnostic (following Hoskins et al.
1985), especially when trying to connect to simpler QG mod-
els and modal solutions.

5. Conclusions

We have analyzed a moist two-layer QG model with condi-
tional latent heating and tilted boundaries and shown that it is
capable of producing a DRV mode. The emergence of a
DRV solution in a minimal model retaining the essential
physics of baroclinicity and moisture clarifies the physical

mechanisms involved and allows us to derive the first analyti-
cal expressions for the growth rate and horizontal length scale
of DRVs.

A key step in our approach is the tilting of the model
boundaries at a slope equal to the mean isentropes, which
makes the two-layer model an analog of the interior of the
Eady model in which dry-baroclinic instability has been shut
off but moist instabilities are still possible. This allowed us to
obtain a pure DRV solution within a conceptually simple
two-layer model. PV-budget analysis revealed two distinct dy-
namical regimes. In the ascending branch, growth of the
anomalies was maintained by diabatic heating partly offset by
zonal advection, while in the descending branch growth was
maintained solely by zonal advection.

We went on to derive the analytical dispersion relation for
the growth rate and horizontal length scale of a DRV on an
infinite domain, a significant novelty of this paper. The gov-
erning equation for the vertical velocity in the DRV is similar
to the equation for the vertical velocity of moist baroclinic
waves (Emanuel et al. 1987; Zurita-Gotor 2005) except for
the presence of two extra terms that lead to isolated rather
than periodic solutions}a distinctive characteristic of the
DRV. Analytic solutions to the dispersion equations were
found in the limit of small static-stability reduction factor (i.e.,
in the limit in which the stratification is neutral to moist con-
vection). While the ascent length remains the same for the
DRV as for the moist wave solutions of Emanuel et al. (1987)
in this limit, the DRV grows faster by 54% as compared with
the moist wave. This faster growth is consistent with the fact
that the DRV emerged as the fastest-growing solution in the
moist baroclinic instability simulations of O’Gorman et al.
(2018) in a warm climate with small moist static stability.
Root solving of the dispersion equations for a larger range of
r values showed that physical solutions cease to exist when
r . 0.38. This is an indication that isolated DRV disturbances
cannot exist on an infinite domain when the moist static stabil-
ity is not small enough.

Including nonzero meridional PV gradients in the tilted
two-layer model and varying their strengths and varying the
moist static stability (as represented by the reduction factor r),
we showed that isolated DRV solutions emerge even in
more realistic model setups and are not an artifact of the as-
sumption of zero PV gradients in our simplest version of the
tilted two-layer model. The most unstable mode transitions
from periodic waves to isolated DRVs when the magnitude
of the PV gradients is weakened or entirely reversed relative
to the standard two-layer setup. This suggests that the verti-
cal structure of meridional PV gradients may be an impor-
tant additional factor that helps to determine DRV genesis
zones in addition to small moist static stability. Weak QG PV
gradients can be found particularly at polar latitudes in the cur-
rent climate, which could help strengthen the links that have
been previously established between the growth mechanism of
DRVs and polar lows (Montgomery and Farrell 1991, 1992;
Moore and Montgomery 2005; Moreno-Ibáñez et al. 2021).

The stark transition from periodic wave solutions to iso-
lated DRV disturbances when diabatic heating becomes more
important than meridional PV advection was also explained
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qualitatively using “PV thinking”: in a diabatically domi-
nated regime, the asymmetry of the diabatic heating regen-
erates only positive PV anomalies in the lower layer and
negative PV anomalies in the upper layer. However, a
series of like-signed PV anomalies in each layer leads to
weaker meriodional flow between the PV anomalies than
occurs for a single PV dipole consisting of one anomaly in
each layer. Thus the single PV dipole has stronger ascent
and latent heating and emerges as the fastest-growing mode
of the system.

Last, we compared the structure of small-amplitude DRV
modes with finite-amplitude storms from reanalysis in winter
and summer and from a warm-climate simulation in an ideal-
ized GCM. The finite-amplitude storms have similarities with
the small-amplitude DRV modes but also some differences.
In the storms from reanalysis, the upper-level negative PV
anomaly is substantially weaker than the lower-level positive
PV anomaly. This asymmetry arises because diabatic PV gen-
eration is weaker in anticyclonic regions at finite amplitude,
and also because upward PV advection from the positive PV
anomaly at lower levels can offset the upper-level negative
PV generation. For the finite-amplitude DRV in the warm cli-
mate of the idealized GCM, vertical advection of the mean
vertical PV gradient near the tropopause meant there was still
a strong upper-level negative PV anomaly. In the case of the
winter storm, the upper-level PV anomaly was sufficiently
weak that it was difficult to identify, and we hypothesize that
a weak upper-level PV anomaly may explain why some DRV
storms in the current climate propagate but do not grow
strongly. This hypothesis could be tested in future work with
a semigeostrophic model that has sufficient vertical levels to
accurately resolve vertical PV advection, and by tracking
DRVs across a range of climates in idealized GCM simula-
tions to study the relationship between growth rates and the
structure of the PV anomalies.

Future work could also investigate whether a DRV solution
and wave–vortex transition can also be isolated within a con-
tinuous Eady model in which dry baroclinic instability is elim-
inated by removing the upper lid. This setup is likely no
longer tractable analytically (because solutions are no longer
separable in the presence of nonlinear heating; Zurita-Gotor
2005), but a numerical analysis would make for a useful exten-
sion of this work, in which realistic features such as near sur-
face temperature advection, vertically dependent drag and
vertically dependent static stability reduction factor could be
more readily incorporated.
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APPENDIX A

Derivation of the Tilted Two-Layer Model

We discretize the moist-quasigeostrophic equations on an
f plane [Eqs. (1) and (2)] in the vertical taking into account
the tilted boundaries h1(y) and h2(y) through a modified
boundary condition on w at the top and bottom (Fig. A1).
For the vorticity equations in the two layers we obtain

­t∇2c1 1 J(c1,∇2c1) 2
f
H

[J(c1,h1) 2 w] 5 0 and (A1)

­t∇2c2 1 J(c2,∇2c2) 2
f
H

[w 2 J(c2,h2)] 5 0: (A2)

Adding and subtracting give vorticity equations in terms
of the barotropic streamfunction f and baroclinic stream-
function t:

­t∇2f 1 J(f,∇2f) 1 J(t,∇2t) 2 f
2H

J(f,h1 2 h2)

2
f
2H

J(t,h1 1 h2) 5 0, and (A3)

­t∇2t 1 J(f,∇2t) 1 J(t,∇2f) 1 f
H

w 2
f
2H

J(f, h1 1 h2)

2
f
2H

J(t,h1 2 h2) 5 0: (A4)

Discretizing the thermodynamic equation in the vertical, we
obtain

­tt 1 J(f, t) 1 N2H
2f

r(w)w 5
N2H
2f

r(w)w: (A5)

We nondimensionalize using x, y ∼ LD, where LD 5 NH/(
��
2

√
f)

is the deformation radius with individual layer height H, z ∼ H,
u and y ∼ U, w ∼U2H/( fL2

D), f 5 t ∼ ULD, t ∼ LD/U, and
h1 and h2 ∼UH/(fLD) to obtain

­t∇2f 1 J(f,∇2f) 1 J(t,∇2t) 2 1
2
J(f, h1 2 h2)

2
1
2
J(t,h1 1 h2) 5 0, (A6)

­t∇2t 1 J(f,∇2t) 1 J(t,∇2f) 1 w 2
1
2
J(f,h1 1 h2)

2
1
2
J(t, h1 2 h2) 5 0, and (A7)

­tt 1 J(f, t) 1 r(w)w 5 r(w)w, (A8)

where all variables are now nondimensional. We next as-
sume small-amplitude perturbations about the basic state
t0 5 2y and f0 5 0 corresponding to a shear flow u1 5 1
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and u2 5 21 such that the advection terms are linearized.
Note, however, that the thermodynamic equation remains
nonlinear because of the nonlinear dependence of r(w) on w.
Using the tilted boundary conditions h1 5 h2 5 y and assum-
ing that the perturbations are independent of y gives the per-
turbation Eqs. (4)–(6). If instead we assume h1 5 a1y and
h2 5 a2y, we obtain the perturbation Eqs. (26)–(28).

APPENDIX B

Derivation of the Equation for w

Starting from Eqs. (9)–(11), we first take two derivatives
of Eq. (11) and subtract Eq. (10) to get

[r(w)w]xx 2 w 5 2fxxx 2 fx: (B1)

Multiplying Eq. (9) by s and taking one derivative, and
substituting for txx and txxxx using Eq. (10), we find

w 2 wxx 1 s2fxxx 2 fxxxxx 1 2fxxx 2 fx 5 0, (B2)

where the last two terms 2fxxx 2 fx can be substituted
using Eq. (B1) to give

[r(w)w]xx 2 wxx 5 fxxxxx 2 s2fxxx: (B3)

Double integration of Eq. (B3) yields the relation

r(w)w 2 w 5 fxxx 2 s2fx 1 r(w)w, (B4)

where we have used mass conservation (w 5 0) to choose
the integration constant (this relation will be necessary as a
substitution at the end of the derivation). Taking two deriv-
atives of Eq. (B1) and subtracting Eq. (B3) twice gives

[r(w)w]xxxx 2 2[r(w)w]xx 1 wxx 5 2s2fxxx 2 fxxx: (B5)

Subtracting Eq. (B1) multiplied by s2 from Eq. (B5), we
get

[r(w)w]xxxx 2 (2 1 s2)[r(w)w]xx 1 wxx 1 s2w

5 2fxxx 1 s2fx: (B6)

Using Eq. (B4) allows us to substitute the last f terms in
Eq. (B6) to finally obtain Eq. (12), which is an equation
in w only.

APPENDIX C

Mass Conservation for a DRV on an Infinite Domain

Imposing mass conservation
	L
0 wdx5 0 on the solution

defined by Eqs. (13) and (14) and using Eq. (17) yields

ab
r 1 s2 2 1

1
c1
k1

sin(k1b) 1
c2
k2

sin(k2b)

1
a
s2 (L 2 b) 1 a

s2 [e2(L2b) 2 1]

1 d2 2
1
s
[e2s(L2b) 2 1] 1 [e2(L2b) 2 1]

{ }
5 0: (C1)

We are interested in the infinite-domain limit L → ‘. It is
important that we took the integral in x to obtain Eq. (C1)
prior to taking the limit L → ‘ (i.e., taking the limit of
the statement of mass conservation) because the order of
taking the limit and integral affects the result. As shown
in section 2c, the definition of a together with mass con-
servation implies that

a 5
1
L


b

0
(r 2 1)w↑ dx

such that a → 0 if we want solutions for which b and w↑
remain bounded. This leaves us with the indeterminate
term aL in the mass conservation equation [Eq. (C1)]. We
can eliminate this term by using

aL 5


b

0
(r 2 1)w↑ dx

5 (r 2 1) ab
r 1 s2 2 1

1
c1
k1

sin(k1b) 1
c2
k2

sin(k2b)
[ ]

(C2)

to arrive at a form of the mass conservation condition that
does not involve aL:

ab
s2 1 r 2 1

1
c1
k1

sin(k1b) 1
c2
k2

sin(k2b)

1
r 2 1
s2

ab
s2 1 r 2 1

1
c1
k1

sin(k1b) 1
c2
k2

sin(k2b)
[ ]

2
ab
s2 1

a
s2 [e2(L2b) 2 1]

1 d2 2
1
s
[e2s(L2b) 2 1] 1 [e2(L2b) 2 1]

{ }
5 0: (C3)

We can now take the limit L → ‘ and a → 0 to arrive at
Eq. (21) in the main text. For completeness we note that
by substituting Eq. (21) into Eq. (C2), and taking the limit
L → ‘ and a → 0, we obtain the expression

FIG. A1. Schematic of the tilted two-layer model in the x–z plane.
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aL 5 d2
(r 2 1)s(s 2 1)

r 1 s2 2 1
· (C4)

APPENDIX D

Derivation of the Dispersion Relation

To derive the dispersion relation from the constraints
[Eqs. (18)–(21)], we write the constraints solely in terms of
equations for c1 and c2. Writing Eqs. (18) and (20) as

1 1

k21 k22

( )
c1 cos(k1b)
c2 cos(k2b)

[ ]
5 d2

0

1 2 s2

r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (D1)

and inverting, we obtain

c1 cos(k1b)
c2 cos(k2b)

[ ]
5

d2
k22 2 k21

k22 21

2k21 1

( ) 0

1 2 s2

r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠: (D2)

Similarly, writing Eqs. (19) and (21) as

k1 k2

1/k1 1/k2

( )
c1 sin(k1b)
c2 sin(k2b)

[ ]
5 d2

s 2 1
r

s(s 2 1)
s2 1 r 2 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (D3)

and inverting, we obtain

c1 sin(k1b)
c2 sin(k2b)

[ ]
5

d2k1k2
k21 2 k22

1/k2 2k2

21/k1 k1

( ) s 2 1
r

s(s 2 1)
s2 1 r 2 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦: (D4)

Dividing the equations for ci sinkib and ci coskib, with
i 5 1, 2, by each other, we obtain the two “tan” equations
that form the dispersion relation [Eqs. (22) and (23)] in
section 2c.

APPENDIX E

Asymptotic Expressions for Growth Rate
and Half-Ascent Length

In the limit r ,, 1, the wavenumbers can be simplified to
k1 5 1/

��
r

√
1 O(

��
r

√
) and k2 5

���������
s2 2 1

√
1 O(r), where we as-

sume that s 5 s0 is an O(1) quantity to be determined.
Plugging these expressions into the two tangent Eqs. (22)
and (23) that form the dispersion relation we obtain to
leading order:

tan
b��
r

√
( )

5 2
1��

r
√ (1 1 s0)

and (E1)

tan b
����������
s2
0 2 1

√( )
5

����������
s2
0 2 1

√
(1 2 s2

0 1 s0)
(1 1 s0)(s2

0 2 1) : (E2)

The right-hand side of Eq. (E1) tends to 2‘ as r becomes
small. To balance it, we use the ansatz b/

��
r

√
5 p/2 1 �,

where � → 0 as r → 0, from which we obtain

tan
p

2
1 �

( )
≈21/� 5 2

1��
r

√ (1 1 s0)
, (E3)

which gives � 5
��
r

√
(1 1 s0) and b 5 (p/2)

��
r

√
1 r(1 1 s0)

such that to leading order

b 5
p

2

��
r

√
: (E4)

Linearizing the tangent in Eq. (E2) we obtain

b 5
1 2 s0(s0 2 1)
(1 1 s0)(s2

0 2 1) : (E5)

Since b is O(
��
r

√
) but the right-hand side of Eq. (E5) is O(1),

the right-hand side must vanish. Thus 1 2 s0(s0 2 1) 5 0,
which implies for growing solutions s0 . 0 that

s0 5
1 1

��
5

√
2

5 1:62: (E6)
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