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Abstract A leading goal for climate science and weather risk management is to accurately model both the
physics and statistics of extreme events. These two goals are fundamentally at odds: the higher a computational
model's resolution, the more expensive are the ensembles needed to capture accurate statistics in the tail of the
distribution. Here, we focus on events that are localized in space and time, such as heavy precipitation events,
which can start suddenly and decay rapidly. We advance a method for sampling such events more efficiently
than straightforward climate model simulation. Our method combines elements of two existing approaches:
adaptive multilevel splitting (AMS), a rare event algorithm that generates rigorous statistics but fails to enhance
the sampling of sudden, transient extremes; and “ensemble boosting,” which generates physically plausible
storylines of these events but not their statistics. We modify AMS by splitting trajectories well in advance of the
event's onset, following the approach of ensemble boosting. Early splitting requires a rejection step that reduces
efficiency, but it is critical for amplifying and diversifying simulated events in tests with the Lorenz‐96 model,
for which we demonstrate improved sampling of extreme local energy fluctuations by approximately a factor of
10 relative to direct sampling. Our method is related to previous algorithms, including subset simulation and
anticipated AMS, but is distinctly tailored to handle bursting events caused by chaotic traveling waves. Our
work makes progress toward the goal of efficiently sampling such transient local extremes in atmospheric
models.

Plain Language Summary What is the strongest rainstorm that we can expect in a given thousand‐
year period? To augment the available∼100 years of historical data and to account for climate change, computer
simulations are a useful, but expensive, tool to answer such questions. A model must run for many millennia to
deliver an answer with statistical confidence. Rare event algorithms provide a promising alternative simulation
protocol, in which an ensemble of short simulations is biased to produce more extreme events and reweighting is
used to correct for the bias when calculating statistics. However, a classical rare event algorithm fails when the
events of interest are short and “bursty” (like heavy rainstorms) instead of long and slow‐moving (like
anomalously hot summers). We modify the rare event algorithm to make it amenable to events resembling
heavy precipitation in an idealized dynamical system with chaotic traveling waves.

1. Introduction
In climate modeling, high spatial resolution is important for realistically representing localized extreme weather
events like cyclones producing extreme precipitation and winds (O’Brien et al., 2016; van der Wiel et al., 2016).
But given finite computational resources, high resolution has to be traded off with the need for ensembles of
models and simulations to deal with uncertainty related to model physics, parameters, initial conditions and
boundary conditions including emissions scenarios. Extreme events are particularly challenging because they
occur infrequently, and hence need large ensemble sizes to have their small probabilities accurately quantified.
The conflict for computational resources therefore comes to a head in the study of extreme events.

A variety of shortcuts have developed in the past century to alleviate this conflict. Leading statistical approaches
include extreme value theory (EVT; Coles, 2001) and large deviation theory (Touchette, 2009), which respec-
tively describe the behavior of maxima and anomalously large running means in random processes. Statistical
theories of extremes help make the most of a fixed data set, but parameter estimation can be unstable given the
restrictive underlying assumptions and the limited data sets available (W. K. Huang et al., 2016; Gálfi
et al., 2017). Moreover, statistical theories don't provide spatio‐temporally resolved extreme events needed to
drive impact models, for example, the spatial field of rainfall prior to and on the day of a flooding event.
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Statistical or dynamical downscaling is another way to address the problem of extremes by reducing the
computational cost of obtaining high‐resolution output from long simulations or large ensembles (Emanuel, 2021;
X. Huang et al., 2020; Krouma et al., 2022; Lee et al., 2020; Saha & Ravela, 2022). Downscaling nevertheless has
some drawbacks. Dynamical downscaling using regional climate models faces the challenge of correctly forcing a
regional model with output from a different global model, and the regional model inherits errors in large‐scale
fields from the global model (Adachi & Tomita, 2020), while statistical downscaling assumptions can create
systematic errors (Schmidli et al., 2007) and may not generalize to different climates.

The storylines approach, on the other hand, seeks to convey climate risk via detailed and physically plausible
realizations of extreme events, which may be a more useful product for stakeholders who must “stress‐test”
infrastructure (Baldissera Pacchetti et al., 2024; Shepherd et al., 2018; Sillmann et al., 2021). “Ensemble
boosting” (Gessner, 2022; Gessner et al., 2021) is one particularly relevant storyline technique, which randomly
perturbs the antecedent conditions (1–3 weeks ahead) of an extreme event from a climate simulation and re‐
simulates the event many times. The resulting alternative realities typically include some even more extreme
events than the baseline simulation, and can reveal interactions between different physical drivers. Ensemble
boosting is thus very useful for assessing conditional probabilities and causal effects given fixed initial conditions,
but due to selection bias in choosing the initial conditions it cannot be used for estimating return periods. In short,
the storyline philosophy explicitly prioritizes plausibility over probability (Shepherd et al., 2018).

The focus of this paper, rare event sampling, offers hope to achieve both statistical and physical precision. The
idea is to allocate a greater share of computation toward rare events, and less toward the long intervening periods
of comparatively mild behavior, while keeping track of the selection bias in order to faithfully estimate clima-
tological, not just conditional, probabilities. This is usually achieved in high‐dimensional settings by splitting
methods, which consist of three steps repeated in a cycle: (a) run an ensemble of simulations forward, (b) identify
the ensemble members making the most progress toward the extreme event, and (c) clone these most‐promising
ensemble members (applying small perturbations) while discarding the less‐promising members, resulting in a
new ensemble that is more prone to extremes than was the original ensemble. With repeated rounds of splitting,
one can populate the tail of the probability distribution more fully, while neglecting the more typical behavior of
lesser interest. Crucially, in statistical analysis of the ensemble, one must compensate for the bias by weighting
each clone with a factor less than one, relying on the importance sampling formalism. See Bucklew (2004) for an
introduction to rare event sampling.

This generic procedure has many possible variants, which have been developed largely in the fields of physics
(Giardinà et al., 2006; Kahn & Harris, 1951), chemistry (Kästner, 2011; Zuckerman & Chong, 2017), and reli-
ability engineering (Au & Beck, 2001), but have recently started to make an impact on Earth and planetary
sciences. For example, extreme European heat waves were sampled by Ragone et al. (2018) and Ragone and
Bouchet (2021) with genealogical particle analysis (GPA), and by Yiou and Jezequel (2020) with empirical
importance sampling. Wouters et al. (2023) sampled extreme European seasonal precipitation accumulations,
also using GPA. Webber et al. (2019) developed a quantile‐based variant of GPA to sample more extreme
versions of tropical cyclones. Planetary science applications include jet nucleation (Bouchet et al., 2019) and orbit
destabilization (Abbot et al., 2021). For studies of climate, rare event sampling can be applied to global models or
paired with the dynamical and statistical downscaling approaches mentioned earlier.

We have elected to use a particular rare event algorithm called adaptive multilevel splitting (AMS), which
operates on the level of full trajectories over a fixed time horizon and applies the small perturbation to trajectories
at the instant that they first cross a threshold of extremity. The “child” trajectory is identical to its parent up until
this time, whereas it diverges from its parent afterward to give a new realization of the extreme event. All
ensemble members failing to cross the threshold are discarded, and the threshold is then raised for repeated rounds
of splitting and killing. Cérou and Guyader (2007) introduced AMS in 2007 following an algorithm called
RESTART (Villén‐Altamirano & Villén‐Altamirano, 1991) for simulating long queue waiting times. AMS has
been used to study regime transitions in climate models (Baars et al., 2021; Lucente, Rolland, et al., 2022),
turbulent flows (Rolland, 2022), and other applications as diverse as molecular dynamics and air traffic control as
reviewed in Cérou et al. (2019).

Given the successes in using rare event sampling discussed above, it is desirable to also use it to sample shorter‐
term extreme weather events, such as daily precipitation extremes, which have large societal impacts in the
current climate (Thompson et al., 2017; Wright et al., 2021) and are expected to intensify under climate change
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(Myhre et al., 2019; O’Gorman, 2015; Pfahl et al., 2017; Tandon et al., 2018). However, heavy precipitation
events (or high wind events) have some dynamical characteristics that distinguish them from the previous ap-
plications and pose challenges to existing rare event algorithms. Unlike continental‐scale, seasonally averaged
anomalies studied previously (Ragone et al., 2018; Wouters et al., 2023), heavy precipitation events of interest are
often sudden, transient, and relatively small‐scale. Their timescale at a particular location is often limited by the
propagation of the dynamical feature causing the precipitation such as cyclones and fronts (Dwyer & O’Gor-
man, 2017). The strategy used in Ragone et al. (2018) and Wouters et al. (2023) relies on some slow‐moving
notion of progress toward the extreme event, naturally given by the integrated temperature anomaly itself
when targeting extreme seasonal average temperatures, in order to decide which simulations to clone or kill. In the
precipitation study of Wouters et al. (2023), the extreme event is again a seasonal total, for which a mid‐seasonal
total is a reasonable measure of progress. But for individual precipitation events, if one uses precipitation itself to
measure progress toward the event, and applies perturbations to a simulation when precipitation picks up, it is too
late for these perturbations to take effect by the time of maximum precipitation. The event simply comes and goes
faster than perturbed simulations diverge. Lestang et al. (2018) found a similar pathology with AMS when
sampling extreme pressure fluctuations on a body embedded in a turbulent channel flow. There, the extreme
events were caused by vortices sweeping past the body, roughly analogous to cyclones sweeping past a location
on Earth, and the rapidity of the fluctuation crippled the effectiveness of the standard splitting strategy.

To isolate and solve the problem of applying rare event algorithms to sudden, transient extremes, we postpone the
specific application to precipitation and first descend the model hierarchy to the Lorenz‐96 model (Lorenz, 1996),
a spatiotemporal chaotic system often used as a toy model for the atmosphere. The model produces extreme
events posing the same algorithmic challenges as precipitation extremes: intermittent, short‐lived bursts carried
by traveling waves with unpredictable amplitudes. It has been used in numerous past studies of extreme event
statistics and predictability (Hu et al., 2019; Qi & Majda, 2016; Sterk & van Kekem, 2017). With this cheap but
behaviorally rich model, we have developed a simple modification to AMS, drawing inspiration from ensemble
boosting by simply applying a split in advance of the event's onset by some advance split time δ—hence, “trying
early” AMS (TEAMS). To make this statistically rigorous, a rejection step is necessary, which comes at an ef-
ficiency cost, but still enables moderate speedups of∼10 relative to direct sampling. Figure 1 displays a schematic
diagram for TEAMS, which will be elaborated in Section 3.

In fact, TEAMS is a repurposing of subset simulation (SS) from structural reliability engineering, introduced in
Au and Beck (2001) and reviewed pedagogically in Zuev (2015). A variant of SS called SS/splitting (Ching,
Au, & Beck, 2005) is adapted to dynamical systems and remarkably similar to AMS. Moreover, we are not the
first to recognize and address the general problem of slow separation of trajectories. Ching, Beck, and Au (2005)
introduced “hybrid subset simulation,” which applies some perturbations before the parent's threshold crossing, to
promote greater statistical independence of the child. This was successfully used to efficiently probe failure
modes of a multistory building in an earthquake simulation. In a rare event algorithm‐based study of decay of

Figure 1. Schematic of the splitting step in (a) AMS and (b) TEAMS. Black curves represent an initial ensemble member, or
ancestor, which exceeds the first level ℓ1 and has been selected for cloning in the first round. In AMS, the perturbation is
applied at the instant t0(ℓ1) when the ancestor first exceeds ℓ1, resulting in a descendant trajectory (blue) which essentially
replicates the extreme event because the separation timescale is longer than the event itself. On the other hand, in TEAMS
(right) we apply the perturbation in advance, by some margin δ > 0. This can sometimes result in rejection (blue descendant),
that is, failure to cross ℓ1. However, when a descendant is accepted (red) it will be more distinct from the ancestor than the
corresponding descendant in AMS and have the potential to reach a substantially higher peak value.
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turbulence in plane Couette flow, Rolland (2022) found that weaker turbulence made trajectories more pre-
dictable and hence slower to spread apart, which stalled the ensemble's progress toward laminarization. They
solved the problem by splitting trajectories at an earlier stage of progress, naming the method “anticipated AMS,”
which is formally justified by the framework of generalized AMS (Bréhier et al., 2015). Despite the heuristic
similarities, our TEAMS method differs from anticipated AMS in some key respects related to the choice of
splitting time and the procedure for handling rejection, both motivated by the chaotic traveling‐wave nature of our
application.

This paper is organized as follows. In Section 2, we present a stochastically forced Lorenz‐96 model and the
behavior of its extreme events as a function of stochastic forcing strength. In Section 3, we first introduce the
general framework of subset simulation. In Section 3.1, we specialize to AMS, and in Section 3.2 we show that
AMS fails in the low‐noise forcing regime, which is often most relevant for weather and climate models. In
Section 3.3, we modify AMS to use a “trying early” step with rejection sampling and recover a substantial
speedup. In Section 3.4, we elaborate on TEAMS and its relation to adjacent methods. In Section 4, we further
explore the relationship between the advance splitting time—a key algorithmic parameter—and classical notions
of predictability timescales. Finally, in Section 5 we point out directions for further development.

2. Lorenz‐96: A Customizable Spatiotemporal Chaotic System
Lorenz (1996) introduced a simple dynamical system (L96 hereafter) meant to capture some crucial aspects of
atmospheric dynamics. The model state space consists of K (≥4) variables {xk}K− 1k=0 arranged on a one‐dimensional
periodic lattice, each k representing a longitude sector on Earth. xk represents a generic atmospheric variable like
wind speed or vorticity and evolves according to the coupled equations

dxk
dt
= axk− 1 (xk+1 − xk− 2) − xk + Fk, k = 0,…,K − 1, (1)

where xk+K is identified with xk. The quadratic terms on the right‐hand side represent advection, like the quadratic
nonlinearity in the material derivative of the Navier‐Stokes equations, which on its own conserves “energy”
1
2∑kx

2
k . The linear term − xk represents damping due to friction, and the additive term Fk represents external

forcing, like a meridional insolation gradient. The latter two terms destroy exact energy conservation, but balance
out in a time‐averaged sense to make for a statistically steady state. Lorenz (1996) introduced the above model
with Fk constant in k and also a version in which Fk is a “subgrid‐scale forcing” that is a function of an additional
tier of dynamical variables representing finer scales, and this version has proven useful for testing stochastic
parameterization schemes (e.g., Gagne II et al., 2020; Hu et al., 2019;Wilks, 2005). Here, we also allow Fk to vary
stochastically with longitude (k) and time:

Fk = F0 + Fm[η1cos(
2πmk
K

) + η2sin(
2πmk
K

)] (2)

where η1,2 are independent Gaussian white‐noise processes, and m is an integer wavenumber. Formally, Equa-
tion 2 renders Equation 1 a diffusion process, using the Itô convention for stochastic integrals (Pavliotis, 2014).
This simple stochastic forcing is analogous to a stochastic parameterization in a weather or climate model, and in
the AMS framework it allows us to easily generate new ensemble members by splitting an existing ensemble
member at a certain time. We verify below that for weak amplitudes the stochastic forcing does not appreciably
alter model statistics.

Another valid choice besides continuous‐time stochastic forcing would be to apply small initial condition per-
turbations at fixed times and allow the chaotic dynamics alone to separate ensemble members, as used for
example, in Ragone et al. (2018); Ragone and Bouchet (2021); Gessner et al. (2021). We choose white‐noise
forcing here to connect more directly with the rigorous mathematical analysis (e.g., Cérou et al., 2019) and
with the easy test‐case of the OU process. Nonetheless, the use of sparse‐in‐time perturbations is an important
regime to consider in future work, as it is simpler to implement for atmospheric models that do not include
stochastic parameterizations.
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The parameters used here are summarized in the upper section of Table 1. We set K = 40, following Lorenz and
Emanuel (1998). We fix the constant part of the forcing to be F0 = 6.0, which is sufficient for weak turbulence (a
larger value would be needed with smaller K). We choose the stochastic forcing wavenumber as m = 4 because
that empirically seems to drive ensemble members apart slightly faster than very small or large wavenumbers (see
Section 4.2). Indeed the stochastically perturbed parameterization tendencies (SPPT) method developed at
ECMWF uses noise that is spatially correlated at a∼10° length scale (Buizza et al., 1999; Palmer et al., 2009). The
amplitude of Fm(=F4) will be explored systematically below. One further parameter, the coefficient a, determines
the strength of the advection term. a = 1 is standard for L96, while a = 0 gives an array of correlated Ornstein‐
Uhlenbeck (OU) processes (Pavliotis, 2014). Retaining the OU process as a special case of L96 is useful to
provide a reference case on which existing rare event splitting algorithms excel. Results for a = 0 are shown in
Figures S1 and S2 in Supporting Information S1, and all other results presented are for a = 1.

Figure 2 displays short numerical integrations of L96 with three different parameter choices. We used the Euler‐
Maruyama method with a timestep of 0.001 to integrate Equation 1, saving out every 0.05 time units. For
comparison, Lorenz and Emanuel (1998) interpret a single time unit as 5 days. The left column shows single‐site
variables x0(t) for each parameter set, while the right column shows corresponding Hovmöller diagrams. In the
standard deterministic system F4 = 0 in the top row, x0(t) fluctuates with a semi‐regular period of ∼2 time units
(10 “days”) but with irregular amplitudes, the largest of which are precisely the extreme events we choose to study
here. The Hovmöller diagram reveals these fluctuations to arise from a field of traveling waves, with roughly eight
maxima and minima moving with negative (“westward”) phase velocity. The steady zonal wave propagation
occasionally gets interrupted, with a wave remaining in place for several turnover times. See, for example,
k= − 15 and 503≤ t≤ 505 in Figure 2b. Globally, these stagnations are associated with kinks that propagate in the
positive (“eastward”) direction. This is reminiscent of atmospheric Rossby waves, whose intrinsic phase and
group velocities have opposite signs (up to a Doppler shift due to the mean flow) (Lorenz & Emanuel, 1998).
Thus, we can loosely think of the waves as being like ridges and troughs in the midlatitude atmosphere.

Figure 2 rows 2 and 3 show analogous pictures for moderate (F4 = 1) and strong (F4 = 3) stochastic forcing,
respectively. As noise increases, the traveling waves transition from unidirectional to zigzagging. The timeseries
become more jagged and more liable to take large excursions from their mean and hover there for longer du-
rations, for example, for k = 0 and 508 ≤ t ≤ 510 in the case F4 = 3.

Figure 3a overlays PDFs of the single‐site value (x0) for all these parameter regimes, plus two more: F4 = 0.5 and
0.25. Reducing the noise roughly preserves the mode but shrinks the tails. The PDF appears to change very little
qualitatively for F4 ≤ 0.5. Figure 3b confirms this is true even in the far tail, with a log‐transformed plot of return
level versus return time for x20. The formal question of asymptotic tail behavior, which arises in extreme value
analysis, is not our primary concern but is worth a brief aside. The limiting case F4= 0 has a bounded tail, which is
easy to see with an energy argument (see also Qi and Majda (2016)): defining x = 1

K∑
K
k=1 xk, the energy

E = 1
2∑k x

2
k evolves as dEdt = − 2E + KFx. Since |x| ≤

̅̅̅̅̅
x2

√
=

̅̅̅̅̅̅̅̅̅̅̅̅
2E/K

√
by the Cauchy‐Schwarz inequality, the

Table 1
Physical Parameters for Lorenz‐96 System (Upper Section), and Algorithmic Parameters for the TEAMS Algorithm (Lower
Section)

Symbol Explanation Value or range

K Number of longitude sites 40

a Strength of advection term {1, 0} (mostly 1)

F0 Constant background forcing 6

m Wavenumber for stochastic forcing {1, 4, 7, 10} (mostly 4)

Fm Strength of stochastic forcing at wavenumber m {3, 1, 0.5, 0.25, 0}

N Number of initial ensemble members 128

κ Number of members to kill each round 1

J Number of rounds of splitting 896

T Time horizon 6

δ Advance split time [0, 2]
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first term dominates for E larger than some critical E0, which must therefore bound the steady‐state distribution's
tail. However, E0 would increase with K, that is, higher‐dimensional systems can in principle support heavier tails
(e.g., Lucarini et al., 2016, ch. 4 discusses general relationships between the shape parameter and the attractor
dimension). This is part of our motivation to set K relatively large.

Figure 2. Time evolution of the L96 model expressed as timeseries of x0(t) (left column) and Hovmöller diagrams (right
column) with three different levels of stochastic forcing. (a, b) have F4 = 0 (the deterministic system); (c, d) have F4 = 1
(moderate forcing); (e, f) have F4 = 3 (strong forcing).

Figure 3. Steady‐state statistics of the L96 model as a function of noise strength, calculated from a long simulation of length 1.28 × 106. (a) Histograms of the model
variable at one site (x0) and (b) return level versus return period for (twice) the local energy x20. Shading in (b) represents 95% bootstrapped confidence intervals from the
modified block maximum method. See text for details.
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The return level versus return period plot (as in Figure 3b) will be used throughout the paper, and we calculate it
using the “modified block maximum”method of Lestang et al. (2018). For a fixed return level ℓ, the return period
τ(ℓ) is defined as the mean (over initial conditions and noise realizations) of the waiting time until an exceedance
occurs: τ(ℓ) = E[min{t : R(x(t)) > ℓ}], where R is some observable of interest for the dynamical system. We
take R(x) = x20, the local energy (times two) at longitude k= 0. Lestang et al. (2018) approximates the exceedance
times by a Poisson process for high ℓ to give

τ(ℓ) = −
T

log[1 − pT(ℓ)]
. (3)

where pT(ℓ) is the probability of at least one exceedance in a fixed time T. pT(ℓ) can be estimated from any
collection of length‐T blocks of data—either from a single continuous timeseries or not. This is very useful
because rare event splitting algorithms generate branching trees of short trajectories, from which we can estimate
block‐wise exceedances but not return times directly.

To produce Figure 3b, we started with simulations of length 1.28 × 106 (after discarding the first 50 for spinup),
split them into B blocks of length T= 6, and measure the maximaM0, …,MB− 1 of x20 over each block. LettingM(b)
denote the bth largest block maximum (M(0) is the largest), we use the empirical (complementary) CDF estimator,
p̂T (M(b)) = (b + 1)/B. Hence, the return curve should interpolate the ordered pairs

(τb, ℓb) = (− T
log[1 − (b + 1)/B] , M(b)). Because it is common to think of ℓ as a function of τ, and to consider

logarithmically spaced return periods, we linearly interpolateM(b) over log τb to get a curve ℓ̂(τ). We bootstrap to
estimate uncertainty, resampling with replacement the blocks 0, …, B − 1 in groups of size B and repeating the
above procedure 5,000 times. Shading indicates the basic bootstrap 95% confidence interval (Wasserman, 2004),
meaning ℓ̂(τ) + ( ℓ̂(τ) − ℓ∗

0.975(τ),ℓ̂(τ) − ℓ
∗
0.025(τ)), where ℓ

∗
α denotes the αth quantile of the bootstrap distri-

bution of ℓ̂ for each τ. Note that when ℓ∗
0.025(τ) is much less than ℓ̂(τ), we get a very large upper bound on the

confidence interval, because it suggests via the basic bootstrap philosophy that ℓ̂(τ) could be very much less than
the true parameter ℓ(τ). The lowest noise curves are close to within uncertainty even in the far tails, demonstrating
the convergence of extreme value statistics for F4 ≤ 0.5. This confirms that stochastic forcing, when sufficiently
weak, does not alter the system's statistics very much, which allows us to approximate the deterministic system's
rare events while remaining within the AMS framework which relies on explicit randomness.

The longest return period estimable by this method of “direct numerical simulation” (DNS) is ∼8 × 105, the
simulation's length. Rare event algorithms can sample physical realizations of extreme events at long return
periods τ(ℓ) with much less computation time than τ(ℓ), but have not yet been applied to local events in L96 with
weak stochastic forcing. Wouters and Bouchet (2016) did apply rare event algorithms to L96, but their system
parameters differed substantially from ours, with F0 = 256 giving a much more turbulent regime reminiscent of a
stochastic process. Moreover, they targeted extremes in a “zonally” averaged energy, 1/ (2K)∑kx

2
k , whereas we

target a local energy variable, x20, at the particular location k = 0, as a closer analog to extreme precipitation or
winds hitting a particular location on Earth.

The parameters a and F4 allow us to test the performance of AMS for a range of problems, from systems on which
AMS performs well to more difficult systems akin to the extreme local precipitation problem. a = 0 (the OU
process) is an easy setting for AMS; a = 1 with large noise F4 is harder, but still doable because of the dominance
of noise. Shrinking F4 further, toward the system of actual interest, gradually renders standard AMS ineffective
and leads us to a modified version of the algorithm called TEAMS that allows for early splitting. The next sections
present the basic algorithm and its modification along this parameter path.

3. Subset Simulation
TEAMS (and the special case AMS) may be viewed as a version of subset simulation (SS; Au & Beck, 2001),
which we use to frame our overall approach. The description below will introduce several tunable algorithmic
parameters, which are summarized in the lower section of Table 1.

The goal is to estimate the probability that a random variable X from a distribution ρ gives rise to large values of
some quantity of interest S(X ), called the score function,
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p(ℓ) =∫ I{S(X)> ℓ}ρ(X) dX = Eρ [I{S(X)> ℓ}], (4)

given only the ability to draw samples X1, X2, … ∼ ρ. I{⋅} denotes the indicator function: one if the argument is
true, zero if false. In structural engineering, X might be the state of a building or dam, with ρ(X ) induced by a
probability distribution over external stresses like wind, earthquakes, or rainfall, while S(X ) would measure the
proximity to failure. For us, X is a length‐T trajectory of L96 (with stochastic forcing): Xn = {Xn(t) : 0 ≤ t ≤ T}.
Since Xn(t) is a 40‐dimensional vector, we will occasionally use a double subscript: Xn,k(t) denotes the kth site
variable of the nth ensemble member at time t. The score function is the maximum over the time interval of the
local energy observable: S(Xn) = max0≤t<T R(Xn(t)), where R(Xn(t)) = Xn,0(t)

2 will also sometimes be called the
(time‐dependent) “score function,” though context will make clear whether “score” refers to S or R. ρ(X ) is the
distribution over trajectories of length T induced by the stochastically forced L96 system. Because the proba-
bilities of interest are very small, a set of independent samples {Xn}Nn=1 from ρ will usually have few if any
exceedances, making the “vanilla” Monte Carlo estimate of p(ℓ) (the fraction of exceedances) subject to high
relative uncertainty. The ratio of the estimator's variance to its mean is approximately 1/

̅̅̅̅̅̅̅̅̅̅̅̅̅
Np(ℓ)

√
(Zuev, 2015). If

we want to aim for a tenfold‐longer return period with the same uncertainty, we need to generate tenfold more
samples. Worse, to reduce uncertainty tenfold we would need one hundredfold more samples, which may be
untenable.

SS breaks down this task into a sequence of easier tasks by setting up a series of intermediate levels
ℓ1 < ℓ2 < … < ℓJ = ℓ where J is the number of levels, and estimating a sequence of conditional probabilities
P{S(X)> ℓj+1|S(X)> ℓj} ≕ p(ℓj+1|ℓj) , which all have moderate magnitudes and are expected to be easier to
estimate. Their product provides an estimate for the target probability:

p̂SS(ℓ) = p̂(ℓ1) p̂(ℓ2|ℓ1)…p̂(ℓJ |ℓJ− 1). (5)

The first term can be estimated by vanilla Monte Carlo: generate N samples X1, …, XN, and attach unit weights to
each: Wn = 1 for n = 1, …, N. Rank the samples by S so that S(X(1)) ≤ S(X(2)) ≤ … ≤ S(X(N)), and let
p̂(ℓ1) = (N − κ1)/N, where κ1 is chosen so that S(X(κ1)) ≤ ℓ1 < S(X(κ1+1)). The parameter κ1 is the number of
trajectories that are “killed” meaning they don't appear in the first subset (see below). For the case of AMS, κ1 is
chosen as a parameter of the algorithm, and ℓ1 is then set adaptively as ℓ1 = 1

2[S(X(κ1)) + S(X(κ1+1))] .

The second term p̂(ℓ2|ℓ1) is estimated with a splitting strategy in which we focus in on the “subset” of samples
that exceed the first threshold: {S(X ) > ℓ1} containing samples X(i) with κ1 < i ≤ N. To better sample this subset,
we spawn additional samples from it via a “Modified Metropolis algorithm”:

1. Initialize a listX1 = {X(κ1+1),…, X(N)} , which will eventually grow to a (user‐chosen) size N1 as well as a first‐
in‐first‐out queue Q of the same elements but in a random order: the “parent queue.”

2. Remove the first element from Q to yield the next parent X. Apply some small perturbation to X to generate a
new sample X̃, which itself is drawn from ρ but correlated to X. A general way to do this is with one step of the
Metropolis‐Hastings algorithm which involves an accept/reject step, but in the particular case of AMS, we
simply apply a new stochastic forcing sequence starting at some “splitting time.” The specific choice of
splitting time is described in the next section.

3. Evaluate S(X̃). If it exceeds ℓ1, we have successfully generated a new sample from the subset. Accept the new
sample, meaning insert X̃ into both Q and X1 and assign it a weight equal to that of its parent X. Otherwise, if
S(X̃)≤ ℓ1, reject X̃. Re‐insert X intoQ and add a copy of X toX1. In implementation, we don't store two copies
of the high‐dimensional object X, but rather we assign an integer “multiplicity” (initially one) to each member,
representing the number of identical copies of X in the ensemble, and increment X's multiplicity by one.

4. Repeat steps 2 and 3 until X1 has N1 elements (counting multiplicity).
5. Multiply the weights of all members of X1 by a factor (N − κ1)/N1, which preserves the total weight N of the
original ensemble {Xn}Nn=1 while spreading that weight over more members.

Having expanded to N1 samples from the subset {S(X ) > ℓ1}, we can now proceed to the next level and generate
additional samples from the next subset {S(X ) > ℓ2} so that it contains N2 samples, where ℓ2 can be determined
adaptively as an order statistic of X1, that is, the average of the κ2th and the (κ2 + 1)th ranked values. The same
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procedure is repeated to generate the next subset X2 (andQ is initialized with only unique elements, not counting
multiplicity, in order to maintain as much diversity as possible). X3,X4,…,XJ are generated in the same fashion,
until either a computational budget is reached, an ultimate target threshold is overcome, or some other halting
criterion is met.

Ultimately we are left with a weighted ensemble {(X1, W1), (X2, W2), …, (XM, WM)}, where M = κ1 + κ2
+… + κJ + NJ includes repeated entries that are accounted for using multiplicity. For example, if member 1 has
multiplicity 2, the ensemble is equivalent to {(X1, W1), (X1, W1), (X3, W3), …, (XM, WM)}. The sampling
{S(Xm)}Mm=1 is over‐represented in the tails, but with correspondingly smaller weights there, and all weights sum to
N. Any expectation of an observable Φ(x) can be estimated as

E[Φ(X)] =∫Φ(x)ρ(x) dx ≈ Φ̂ =
1
N
∑
M

m=1
Φ(Xm)Wm. (6)

The SS algorithm will generally help to improve this estimate for functions Φ most sensitive to the tail region of S
(x), rather than its central bulk. In particular, setting Φ(x) = I{S(x)> ℓ}, we recover the estimator p̂SS(ℓ):

E[I{S(X)> ℓ}] = p(ℓ)≈
1
N

∑
m:S(Xm) > ℓ

Wm = p̂SS(ℓ). (7)

An important set of algorithmic choices are the population parametersN,N1, …,NJ, the killing numbers κ1, κ2,…,
κJ, as well as the halting criterion which determines J. Cérou et al. (2019) reviews theoretical bases for several
different choices, but here for simplicity we opt for the same rule as used in Lestang et al. (2018): κj = κ = 1 (the
“drop 1” rule) and Nj = N for all j = 1, …, J (the population is replenished after each new level is set). Note that
with κj = 1, only a single parent is selected from Q at each round before the level is raised and the queue re‐
initialized.

3.1. Adaptive Multilevel Splitting (AMS)

AMS (in particular “trajectory AMS (TAMS)” in the nomenclature of Lestang et al. (2018)) can be seen as a
special case of SS where each X = {X(t) : 0 ≤ t ≤ T} is a length‐T trajectory of a stochastic dynamical system; the
score is S(X ) = max0≤t<T R(X(t)) for some observable (time‐dependent score function) R(X(t)), and with a
particular choice for splitting trajectories. Trajectories are split by constructing a new forcing sequence η̃(t)
[η̃1,2(t) for our L96 model] to drive the child trajectory X̃(t) starting from the old forcing sequence η(t) that drove
the parent. First, copy the initial condition X̃(0) = X(0). Then, copy η̃(t) = η(t) up until some split time tsp, which
is chosen as the first time t0(ℓ) (a discrete timestep) that the parent clears the threshold:

tsp = t0 (ℓ1) = min{t∈ [0,T] : R(X(t))> ℓ1}. (8)

For following times t ≥ tsp, swap in a new and independent noise forcing sequence for η̃(t). No Metropolis‐style
accept/reject step is needed for step (2) above; each newly sampled Brownian increment of η̃(t) is drawn inde-
pendently from N(0, Δt), and so η̃(t) is a proper sample from the same noise‐generating distribution as η(t).
Furthermore, the choice of tsp = t0(ℓ1) guarantees X̃(t) = X(t) for all t ≤ t0(ℓ1), so that S(X̃)> ℓ1, and acceptance
is guaranteed in step (3) as well. In other words, copying the parent exactly up to and including the time of
threshold crossing guarantees that the child crosses the same level, and achieves a score no less than ℓ1.

The change in forcing for t ≥ tsp will cause the child to diverge from the parent, producing a new—but correlated
—sample (Figure 1a). How correlated X̃ is to its parent X depends on tsp, with later tsp implying a longer shared
history and less independence. Applying the split at tsp = t0(ℓ) maximizes the independence of the child—and
ultimately the diversity of the AMS ensemble—while guaranteeing S(X̃) exceeds ℓ1, and therefore is accepted
in the modified Metropolis Algorithm. The same procedure is carried out for every subsequent level.

We performed a sequence of AMS experiments with the following parameters:
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1. Physical constants and timescales: F4 ∈ {3, 1, 0.5, 0.25} for the default case a = 1 which gives the sto-
chastically forced L96 model, and F4 = 3 for the case a = 0 which gives the OU process (shown in Figures S1
and S2 in Supporting Information S1). We fix F0= 6, andK= 40 throughout, and set the time horizon to T= 6.

2. Ensemble sizes and population control: N = Nj = 128 and κj = 1 for j = 1, 2, …, J = 896 adhering to a fixed
computational budget of 1,024 time horizons simulated. One additional halting criterion is imposed: if the
population loses so much diversity that all active ensemble members descend from the same ancestor, we
terminate the algorithm early.

3. We repeat the whole procedure M = 56 times for each parameter set, with different seeds for pseudo‐random
number generation. Each repetition will be called a “run” of AMS. Having multiple runs allows us to assess
variance, and by using pooled estimates from all runs to hedge against stagnation within local optima of phase
space in a particular run.

The initial N‐member ensemble is generated as a sequence of consecutive blocks from a moderate initialization
simulation of length N × T (T = 6 is the time horizon), after discarding the first 50 units as spinup. The spinup is
initialized as xk(0) = F0 + 1

1000 sin (
2πk
K ). The random number generator used to create the noise forcing sequences

η1,2(t) is seeded with s ∈ {0, …, M − 1}, a different value for each AMS run with a fixed parameter set. The N
initial blocks, although weakly correlated, comprise a sample from the steady‐state distribution of the stochastic
L96 system. Larger N reduces the variability of the AMS results, but it also means more up‐front cost and more
rounds of splitting needed to reach return times long enough to make the algorithm worthwhile. The procedure for
generating the initial ensemble can be generalized, for example, to a system with a seasonal cycle, as in Ragone
and Bouchet (2021): if we only cared to sample summertime extremes, we would simply take the N initial blocks
to come from summer months only.

We compare our results from AMS to a long DNS simulation of length 1.28 × 106 (separate from the initiali-
zation), which is then further elongated by a factor of 40 (concatenating all K timeseries end‐to‐end) into
5.12 × 107, exploiting the statistical equivalence of all K = 40 sites of L96. This curve is our best estimate of
ground truth. Note that the symmetry is only exploited to extend the DNS estimate, not the AMS estimate. In a
climate model with zonal inhomogeneities, such as continents, it would be inappropriate to aggregate different
longitudes together.

Figures 4a and 4b illustrates the effect of successive mutations over the course of the AMS algorithm, on the
relatively easy case of strong stochastic forcing, F4 = 3 and a = 1. The even easier case of a = 0 (the OU process
with no interference from advection) is documented in Lestang et al. (2018) and included in Figures S1 and S2 in
Supporting Information S1 for completeness, but qualitatively resembles the displayed case of F4 = 3 and a = 1.
By design, the levels increase monotonically over the course of generations and the descendant scores march
upward, ultimately mutating the moderate ancestor into an extreme descendant. Going beyond case studies of a
single ancestor, Figures 5a, 5b, 5c confirm the benefit of AMS for a statistically accurate sampling of the dis-
tribution's tails. Figure 5a shows return period curves calculated with the modified block maximum method
according to three data sets: the full weighted ensemble from AMS; the initialization (“Init”), consisting of N
ensemble members per AMS run; and the long DNS simulation. The return levels are interpolated onto a common
logarithmically spaced grid of return periods for easy comparison between the three data sources. Whereas return
level estimates based on the initializations alone (blue) scatter considerably around the ground truth, AMS
provides a tighter range of estimates (red) around the ground truth, and for ∼3 orders of magnitude‐longer return
periods, at only 8 times the cost of initialization (1,024 members from an initial 128). Moreover, each AMS run is
∼5,000 times less costly than the DNS run that gave the ground truth curve; altogether, the 56 AMS runs are∼100
times less costly.

Another way of comparing AMS to DNS is by pooling together all members from the 56 ensembles and
considering them as one larger ensemble of size 56 × 1,024 = 57,344. Figure 5b shows the resulting statistics
which have the advantage of extending to considerably longer return periods than the individual AMS runs. Here,
as in Figure 3, the error bars are given by the basic bootstrap 95% confidence interval using 5,000 bootstrap
samples, but in the case of DNS (gray error bar), each bootstrap resampling contains only enough blocks to match
the total simulation time used by AMS (including all independent runs). This lets us compare the uncertainties
fairly between the two methods. In the case of AMS error bars, the members within a single run are not inde-
pendent of each other, and so we resample the AMS runs. That is, we sample with replacement the numbers {0,
…, 55} in groups of size 56, 5,000 times, and for each resampling we pool together all members from the
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corresponding list of AMS runs, including repetitions. Figure 5c shows the unweighted histogram of scores
coming from the three data sources. The difference in shape of the AMS histogram compared to the DNS his-
togram demonstrates the main effect of AMS: to undersample the low end of the distribution and oversample the
tail, shifting the computational burden to where it is more useful for sampling extremes.

Figure 4. Scores for single ancestors and their descendents within the AMS algorithm (special case of TEAMS with δ = 0).
For each stochastic forcing amplitude, 56 independent runs of AMS were carried out (indexed 0–55) with N = 128 ensemble
members (0–127). (a) Time‐dependent score function R(X7(t)) = X7,0(t)

2 for the seventh initial ensemble member (ancestor)
of run 14 for F4= 3. A black circle indicates the scalar score S(X )=maxtR(X(t)). R(X(t)) and S(X ) are also shown for a single
lineage (path down the family tree) in a sequence of brightening colors, ending with the highest scoring descendant's score in
red. (b) Scores in gray dots, with the horizontal axis numbering all descendants from ancestor 7 of run 14 for F4= 3. Colored
circles indicate those descendants in the lineage from (a). The dashed gray curve indicates the levels ℓ from which each
descendant was split. Panels (c, e, g) are the same as (a), and (d, f, h) are the same as (b), but with stochastic forcing strength
decreasing to F4 = 1, 0.5, and 0.25 respectively. In each case, the run and ancestor were hand‐selected among the ancestors
with the maximum boosting.
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We consider AMS to “win” over DNS if either of two criteria are met: (a) the AMS estimate remains close to the
DNS (relative to error bar width) for return periods well beyond the AMS total simulation time TAMS; (b) the
AMS error bar is much smaller than the DNS error bar at TAMS. Under strong stochastic forcing, AMS performs
very well by both criteria, accurately (and confidently) estimating return periods as long as 107 in the pooled
estimate using only 3.4 × 105 time units of computation. In other words, using AMS extends the rarity of events
that can be estimated by a factor of ∼30 compared to DNS at the same computation cost. This aligns with the

Figure 5. Performance of the AMS algorithm (special case of TEAMS with δ = 0) on the time‐dependent score function R
(Xn(t)) = Xn,0(t)

2. (a) Return level versus return period plots for F4 = 3. Blue lines show estimates from the initial 128
members of each AMS run; red lines show estimates from the completed AMS runs; black line shows DNS. (b) Return level
versus return period for a pooled AMS ensemble containing all 56 × 1,024 members. Blue and red envelopes indicate 95%
confidence intervals (see text for details). Gray envelope is a 95% confidence interval based on subsets of DNS equal in total
cost to the 56 AMS runs. Thus, the red line and shading from AMS is of equal cost to the gray shading from DNS.
(c) Unweighted histogram of scores for AMS initialization (blue), completed AMS (red), and DNS (black). Following rows
are same as first row, but with noise decreasing to F4 = 1, 0.5, and 0.25, respectively. The slight variability in TEAMS costs
listed to the left are due to the early halting criterion of one single ancestor remaining (see Section 3).
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demonstration in Lestang et al. (2018) for the OU process, and serves as a departure point for our modification of
the algorithm.

3.2. Failure of AMS in the Regime of Weak Stochastic Forcing

The story gets more complicated when the stochastic forcing is weak and nonlinear dynamics dominate. In
deterministic chaos, perturbations grow exponentially with a rate inversely proportional to the Lyapunov time-
scale—at least, so long as the perturbations remain infinitesimal. Only after several elapsed Lyapunov times—
what we call the divergence timescale, quantified further in Section 4—do perturbations become large enough
to be useful for splitting algorithms, but also at which size nonlinear effects take over. In contrast to deterministic
chaos, white noise realizations diverge immediately. The stochastic L96 system inherits both behaviors to some
extent, determined by the relative strength of stochastic forcing. Our main thesis is that when nonlinear dynamics
dominate, and divergence time exceeds the duration of the event of interest, standard AMS is inadequate, but this
can be remedied by adjusting the choice of splitting time tsp as shown in the next section.

Figures 4c–4h show ancestors and descendents for AMS, analogous to Figures 4a and 4b and with identical
algorithmic parameters, but with decreasing levels of stochastic forcing: F4 = 1, 0.5, 0.25. For all four stochastic
forcing strengths, ancestors can spawn more extreme descendants. However, there is a key difference between the
strong‐ and weak‐stochastic forcing regimes. With strong stochastic forcing F4 = 3 (Figures 4a and 4b), each
descendant along the lineage improves upon the same event. In other words, the sequence of maximum scores
comes from a peak in the timeseries for R(X(t)) that grows taller and taller, drifting only slightly forward in time.
With weaker stochastic forcing (Figures 4c–4d, 4e–4f, and especially 4g–4h), events tend to see only modest
boosts from generation to generation. The only way for a child X̃ to improve substantially over its parent X is by
creating a whole new event—a new peak later in the time horizon—rather than building on an existing event. This
happens because the stochastic forcing is too weak to open a large gap between R(X̃(t)) and R(X(t)) during the
short interval between the splitting time t0(ℓ), when R(X(t)) first exceeds ℓ, and the peak argmaxtR(X(t)). The
child ends up essentially replicating the parent's peak, which is the same behavior illustrated schematically in
Figure 1a. The characteristic time scale of the peak (what we will call the event duration) is set by the zonal
propagation of waves, and this timescale is not long enough compared to the divergence time for AMS to work
well. The same phenomenon was observed in Lestang et al. (2020): extreme spikes in the force on a body in a
turbulent channel flow (see their Figure 14) could not be boosted via AMS, which was attributed to the
“sweeping” of vortices past the body. Similar reasoning holds for the zonal propagation of waves in L96 and the
passage of midlatitude cyclones or fronts past a location in the midlatitudes. Rolland (2022) confronted a related
problem when sampling rare transitions from turbulent to laminar flow, in which progress toward the rare event
(laminarization) damped the perturbation growth necessary for trajectories to diverge.

Figure 5 summarizes the performance of AMS for different strengths of stochastic forcing. The suspicion of
failure raised by Figure 4 is confirmed by the clear degradation of performance as F4 shrinks. In particular, the
individual AMS return level curves tend to fall farther and farther underneath the true return level curves (left
column of Figure 5). There is a large scatter in the individual runs. In the case F4 = 0.5, three of the 56 runs
generate exceptionally high extremes, without which the pooled estimate would fall well below the DNS return
levels. The width and asymmetry of the confidence intervals indicate the unreliability of this result (Figure 5h).
The problem worsens as F4 drops to 0.25, with the individual AMS runs barely improving upon the initial scores
(Figure 5j) and a large underestimate at longer return periods for the pooled estimate (Figure 5k).

It thus appears that standard AMS is dead on arrival when the divergence timescale exceeds the event duration. In
principle, there is a canonical fix for this problem, namely to use a more intelligent score function than the
quantity of interest R(X(t)) itself. The ideal such proxy is the committor: the probability, given an initial condition
X(t) = x, that R(X(s)) will exceed ℓ at some time s ∈ (t, T ) before the time horizon ends. By definition, the
committor incorporates information about the model state X(t) that is not available from R(X(t)) = x20, for
example, the speeds and magnitudes of different wave packets scattered across the domain that may all soon
converge at k= 0 and result in an extreme burst of energy. The committor is an optimal score function for AMS in
terms of minimizing the variance for p̂(ℓ) (Cérou et al., 2019; Lestang et al., 2018; Lucente, Rolland, et al., 2022).
Considerable research has recently pursued approximation strategies for the committor in various climate ap-
plications (e.g., Finkel et al., 2021; Jacques‐Dumas et al., 2023; Lucente, Herbert, & Bouchet, 2022; Miloshevich
et al., 2023; Tantet et al., 2015).
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Unfortunately, these strategies all require either a high volume of training data—potentially canceling out the
savings of a rare event algorithm, which is useful precisely in the low‐data regime—or very specific knowledge of
phase space geometry, such as a bistable structure, which is not typically available for realistic climate models. A
second, related problem is that the optimality property only holds true for a single committor with a fixed
threshold ℓ. What if we seek return periods for a whole range of thresholds? We would have to sacrifice the
accuracy of some return periods in favor of others. Alternatively, we could use the committor for a single very
high threshold ℓmax, but then even less training data would be available. Although it is interesting and worthwhile
to search for committor functions based on traveling‐wave dynamics, we leave that to future work, and in the next
section we describe a simpler strategy to get around the stagnation issue seen in Figure 4.

3.3. Trying‐Early Adaptive Multilevel Splitting (TEAMS)

To address the failure of AMS in the nonlinear regime, we adjust tsp = tδ(ℓ)≕ t0(ℓ) − δ by an advance split time
δ > 0, allowing some time for the child X̃ to drift farther away from the parent and possibly achieve a higher
maximum score. Indeed, ensemble boosting (Gessner et al., 2021) does exactly that, systematically applying
perturbations every day from 19 to 7 days in advance of heat wave onset, although ensemble boosting does not by
itself allow the calculation of return periods for the boosted events. When splitting early we lose the guarantee that
R(X̃(t)) clears the current level ℓ (depicted schematically in Figure 1b), which is why we frame our modified
algorithm using subset simulation (see Section 3) which includes an accept/reject step: when a child fails to score
higher than ℓ, it is discarded from the ensemble and its parent is duplicated instead (in other words, incrementing
its multiplicity by one). The resulting algorithm, which we call TEAMS (“trying‐early adaptive multilevel
splitting”), incurs additional cost due to rejected samples, but also gains back the ability to build significantly
upon ancestral scores. Since TEAMS is a special case of SS, we know from the analysis of Au and Beck (2001)
that it is unbiased.

One can interpret the advance split time δ as setting the width of the proposal distribution, a key parameter in
Markov chain Monte Carlo methods. A wider proposal allows the child to explore farther afield from its parent,
but increases the risk of rejection. Proposal width often has to be tuned carefully, and the sampling community has
devoted substantial efforts to adaptively designing the proposal (Andrieu & Thoms, 2008; Walter et al., 1998).
Such methods may be useful for complex climate models, but in our present proof‐of‐concept study of the al-
gorithm, we found approximately optimal δ values by grid search for each noise level. Section 4 explains the
procedure we used for determining optimal δ values how they relate to the error saturation timescale, a classical
measure of predictability.

Figure 6 shows TEAMS implemented for the same parameter sets from Figure 4, but with (roughly) optimal
advance splitting times δ = 0.0, 0.6, 1.0, and 1.4 for the decreasing noise levels. At F4 = 3, δ = 0 still works best,
and panel (a) is the same as in Figure 4a. We adjust the time horizon T = 6 + δ to give each parameter choice the
same length of time to boost. All other parameters are as before for the AMS experiments. Note that the score
functions R(X(t)) are only defined for times t > δ, because if t0(ℓ) < δ then tδ(ℓ) < 0, so we cannot apply the split
early enough. This is implemented by setting the early values to R(X(t < δ)) = NaN, and lengthening the time
horizon from T to T + δ as mentioned above. We account for this extra cost in all the performance calculations to
follow, but we omit the first δ time units from the plots.

For all four stochastic forcing strengths, we see examples of children building significantly, and directly, upon a
parent's maximum, without having to discover a new peak farther into the future (Figure 6). The values of the
scores form continuous point clouds in panels (b, d, f, h), unlike the discrete horizontal bands appearing in
Figures 4f–4h where δ= 0 and stochastic forcing is weak. The negative side‐effect is that many gray dots fall short
of the gray dashed line, indicating a rejected sample. Clearly, increasing δ brings both higher risk and higher
reward.

Figure 7 quantitatively confirms the hopeful suggestion of Figure 6: that increasing δ can give TEAMS a speedup
over DNS in the weak stochastic forcing regime. For all cases shown, TEAMS extends the estimated return
period, accurately, well beyond the gray envelope which marks the uncertainty spread in an equal‐cost run of
DNS. The black ground truth curve remains within the 95% confidence band of TEAMS to return periods of∼107,
a factor of 10 longer than the DNS duration, across all forcing levels. Simultaneously, the TEAMS confidence
band is narrower than the DNS band.
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Figure 7 shows TEAMS gives a good estimate of the return values when all runs are pooled together, but that most
individual TEAMS runs underestimate the true return values while a few overestimate them to allow for a good
pooled estimate. As in Lucente, Rolland, et al. (2022), we can attribute this behavior to apparent bias, which is
best explained by analogy: an experiment consisting of 100 flips of a coin with p = P(heads) = 0.001 has a nine
in ten chance of landing no heads, yielding a probability estimate p̂ = 0. But one experiment out of ten will yield
p̂ = 0.01, a gross over‐estimate, and only by pooling these two scenarios together can we see the estimator's lack
of bias. Unlike the coin‐flipping experiment, TEAMS is designed to preferentially sample extreme values, but a
given AMS run for L96 may still get stuck in a local optimum yielding underestimated return values, especially if
the stochastic forcing is too weak to jolt a trajectory out of it. Thus, pooling over multiple runs is especially crucial
in the deterministic limit.

Figure 6. Time‐dependent scores (a, c, e, g) and scalar scores (b, d, f, h) for single ancestors and their descendants generated
by the TEAMS algorithm. Format is the same as Figure 4 but with advance split times δ chosen to be approximately optimal
for each noise level: F4= 3, δ= 0 (a, b); F4= 1, δ= 0.6 (c, d); F4= 0.5, δ= 1 (e, f); F4= 0.25, δ= 1.4 (g, h). Because δ= 0 is
optimal for F4 = 3, panels (a, b) are the same as Figures 4a and 4b. Section 4 explains how the δ values were chosen.
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3.4. Relation of TEAMS to Other Methods

Anticipated AMS, introduced by Rolland (2022) for the turbulence decay problem, has some similarities with
TEAMS but also some key differences. Rolland (2022) define a score function ϕ(X(t)) (analogous to our R(X(t)))
as a turbulent kinetic energy, rescaled to be zero in turbulent flow and one in laminar flow. Rather than splitting a
trajectory exactly at the time of threshold crossing t0(ℓ)—the earliest time at which ϕ(X(t0(ℓ))) ≥ ℓ—they split at
an earlier time tb defined as the most recent time that ϕ(X(tb))≤ ϕb(ℓ) for an auxiliary function ϕb(ℓ)≤ ℓ designed
with the aim of placing the splitting time within the turbulent regime conducive to faster trajectory spread. This
strategy is not expected to work well for our score function R(Xn) = X2n,0 because it would lead to splitting times
being close to the time when the score function reaches a peak and not early enough to allow trajectories to
diverge by the time of the peak. The basic issue is that X2n,0 sweeps through its full range of values more rapidly

Figure 7. Performance of the TEAMS algorithm: single‐run return period curves (a, d, g, j); pooled return period curves (b, e,
h, k); and unweighted histograms (c, f, i, l). Format is the same as Figure 5 but with advance split times δ chosen to be
approximately optimal for each noise level: F4= 3, δ= 0 (a–c); F4= 1, δ= 0.6 (d–f); F4= 0.5, δ= 1 (g–i); F4= 0.25, δ= 1.4
(j–l). Because δ = 0 is optimal for F4 = 3, panels (a–c) are the same as Figures 4a–4c.
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than the divergence timescale. We surmise that the traveling wave field of Lorenz‐96 subjects our local energy
observable to more frequent oscillations than globally integrated energy observables used in Rolland (2022) and
Wouters and Bouchet (2016), which are less sensitive to the fluctuations of any single wave. Several (quasi‐)
periods of lead time are needed to effect a sizable boost in a local observable. For our problem, this makes δ a
more suitable parameter than an anticipating function ϕb.

Anticipated AMS also differs from TEAMS in how rejection is handled. When a child fails to clear the threshold
ℓ, anticipated AMS discards it and keeps trying until success, as if the failure never happened. This strategy is
reasonable when the rare event is a locally attracting set in phase space, such as the laminar regime of plane
Couette flow. Our setting is different: the local energy bursts in L96 are not metastable. Repeatedly trying to boost
a parent which is already near a local maximum in phase space will yield at best infinitesimal improvements, and
may only serve to exhaust the computational budget. In contrast to anticipated AMS, TEAMS follows SS in
limiting the number of rejections to κ1 (summed over all parents selected in a given round of splitting; see step 4 in
Section 3) by filling up the queue with copies of the parent.

Bréhier et al. (2016) introduced a large class of “generalized AMS” (GAMS) algorithms. One generalization is to
do early splitting as in TEAMS but just before the threshold crossing, that is, δ = Δt (the save‐out timestep), and
proceed with rejection sampling as in Rolland (2022) with the motivation of avoiding “extinction,” a technical
problem in which every active ensemble member has the same maximum score. If we were to follow suit and set
δ= 0.05 for L96 with weak stochastic forcing, we would also avoid extinction, but only gain infinitesimal boosts.
Since we found it essential to extend δ further and limit the number of retries, we opt to frame TEAMS as a special
case of SS rather than GAMS.

The literature on SS contains even more variants, including “hybrid subset simulation” (SS/H; Ching, Beck, &
Au, 2005), which operates on trajectories and addresses a similar problem as TEAMS: namely, the high corre-
lation between parents and children. In SS/H, child acceptance is made more likely by making small adjustments
to the parent's forcing sequence, but over the entire time horizon; then, if the child is accepted, its forcing sequence
after the threshold crossing is further modified to be totally independent. In contrast, TEAMS simply perturbs
independently at all times following tδ(ℓ). SS/H represents one of many flexible modifications in the SS
framework that are worth exploring further.

In choosing between these algorithmic variants, a user must consider the full interplay between the dynamical
system, the form of stochasticity, and the event of interest. To our knowledge, no prior literature has parame-
terized the perturbations in terms of advance split time itself. The next section explores its effect more
systematically.

4. Optimizing Advance Split Time
This section explains howwe determined optimal values of the advance split time, δopt, using a simple grid search.
We then investigate the dependence of δopt on stochastic forcing strength as a guide for choosing δ prior to running
TEAMS on a more expensive model for which grid search would not be feasible.

4.1. Grid Search

We performed a sequence of TEAMS experiments with (F4, δ) ∈ {3, 1, 0.5, 0.25} × {0, 0.2, 0.4, …, 2.0}, a range
which we found to bracket the optima. As before we use a time horizon of T + δ in each case. We selected the
“optimal” δ values based on two simple performance metrics, which are plotted in Figure 8.

1. Return level RMSE: the root‐mean‐square difference of return level between a TEAMS estimate (from a single
run) and the DNS‐determined ground truth, where the mean is taken over uniform bins in log τ space. This
metric is proportional to the L2‐norm between a red line and the black line in the left columns of Figures 5 and
7. In cases where the red line stops before the black line, it is extrapolated to longer return periods with a
constant given by its maximum to penalize the algorithm getting stuck at a false upper bound. We calculate
statistics of the return level RMSE across runs, including the mean and quantiles, which are displayed in
Figures 8a–8c, 8e, and 8g. Note that these correspond to percentile bootstrap confidence intervals (Wasser-
man, 2004), as opposed to the basic bootstrap confidence intervals shown in Figures 5 and 7. Here we use the
percentile bootstrap as a means of sensitivity analysis, to show the range of results that might occur due to
sampling variability. The basic bootstrap, by contrast, is intended to bracket the ground truth of some
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parameter value. The return level RMSE can also be calculated for the pooled estimate, and it shows similar
but noisier trends.

2. Mean family gain: the maximum improvement (difference in scores) from ancestor to descendant over all N
ancestors, averaged over the 56 runs. This does not measure statistical accuracy, but only the consistent ability
to generate extreme events out of moderate events. Figures 8b, 8d, 8f, and 8h shows mean family gain. Other
metrics of gain, such as the maximum descendant score minus the maximum ancestral score (not necessarily
from the same family tree) yield very similar trends with δ, albeit different absolute values.

Figure 8. Performance of TEAMS as a function of advance split time δ and as measured by panels (a, c, e, g) return level
RMSE and panels (b, d, f, h) mean family gain for F4 = (a, b) 3, (c, d) 1, (e, f) 0.5, and (g, h) 0.25. Return level RMSE is
computed separately for each run. Thick red lines show the average over runs; dark red envelopes show the percentile range
25%–75% (or interquartile range, IQR); and light red envelopes show the percentile range 2.5%–97.5% (95% confidence
interval, CI) across the 56 runs. Mean family gain is maximum gain in score within a single family averaged over the 56 runs.
Vertical gray lines show the optimal values of δ used in Figures 6 and 7.
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A good choice of δ should have a small return level RMSE and a large mean family gain. Based on both per-
formance metrics, we selected optimal δ= 0, 0.6, 1, 1.4 for F4= 3, 1, 0.5, 0.25, respectively. These optimal values
are marked with vertical gray lines in Figure 8, and they are used in Figures 6 and 7. For F4 = 0.5, the two metrics
gave slightly difference optimal values (δ = 1.2 for return level RMSE or δ = 1 for mean family gain); we chose
δ = 1 because it gave the better pooled estimate. We emphasize that the optimal values are only discernible by
averaging over many independent runs. For completeness, we display all 44 return level versus return period plots
(4 values of F4 × 11 values of δ) in the supplement. In general, shifting the optimal δ by ±0.2 doesn't change the
results qualitatively, but larger shifts can degrade performance. The absolute values of errors should not be
compared between stochastic forcing levels, since each has its own statistical steady state. Rather, the important
takeaway is the increase in optimal δ as the stochastic forcing weakens. Indeed, in the singular limit of zero
stochastic forcing the advance split time must necessarily go to infinity to have any effect at all, and initial
condition perturbations would be needed to split trajectories.

To summarize, we have found that some choices of δ can make TEAMS effective where AMS is not effective, and
that the optimal δ increases as stochastic forcing magnitude decreases. In the next section we relate this behavior
to the predictability time, which points toward a cheap method to estimate an optimal—or at least, reasonably
performant—δ, without having to repeatedly run TEAMS.

4.2. Relation Between Optimal Advance Time and Error Saturation Timescales

Heuristically, we expect δopt to reflect the divergence timescale of perturbed trajectories that are introduced in
splitting. Can this be related to classical predictability timescales? Lyapunov exponents and singular vectors
(Cencini & Ginelli, 2013; Maiocchi et al., 2024; Norwood et al., 2013; Pazo et al., 2010) apply to the regime of
infinitesimal perturbations. The kind of perturbations we strive for in rare event sampling are finite and nonlinear,
turning peaks into substantially larger peaks as in Figures 4 and 6. “Finite size Lyapunov exponents” (FSLEs)
(Boffetta et al., 1998; Cencini & Vulpiani, 2013) are closer to what we need, generalizing the Lyapunov exponent
to be dependent on an initial perturbation amplitude. Typically, the perturbation grows in two stages: first
exponentially, during which the FSLE equals the leading Lyapunov exponent, and then diffusively (scaling as a
power law with time), during which the FSLE declines. The divergence timescale is bounded below by this
change point, which approaches zero as stochastic forcing becomes dominant: indeed, the variance of pure
Brownian motion grows linearly in t immediately.

On the other hand, one shouldn't split trajectories too far in advance: δopt is bounded above by the error saturation
timescale, when perturbed ensemble members become independent and inhabit totally different regions of the
attractor. By then, the root‐mean‐square error (RMSE) of the ensemble will equal the root‐mean‐square distance
(RMSD) between two randomly chosen points on the attractor. In climate models, the saturation timescale is a
convenient and effective measure of predictability (Sheshadri et al., 2021). Clearly, δmust be chosen shorter than
the time to saturation, since a child trajectory ought to take advantage of pre‐existing maxima produced by its
parent. To investigate this relationship, the following experiments measure time in terms of fraction of saturation.

For each F4 considered, we ran a moderate‐length control simulation x(t) for 0 ≤ t ≤ 1,050 (discarding the first 50
as spinup), and measured the RMSD for this simulation. At initialization times 50, 70, 90, …, 990 (48 in total) we
branched a 16‐member ensemble with identical initial conditions x(t) but independent stochastic forcing re-
alizations (a convenient feature of stochastic forcing is that errors grow even from perfect initial conditions,
removing dependence on initial perturbation amplitude). We integrated each member for 15 time units, calculated
RMSE as a function of time (separately for each ensemble), and inverted to find the times tϵ at which the fraction
of saturation ϵ = RMSE/RMSD reached a given value. In other words, RMSE(tϵ) = ϵ × RMSD. Finally, we take
the average across initializations to get a single value tϵ for each of several ϵ values. The total cost of this
experiment is 1.2 × 104 time units, roughly equal to 1.5 runs of AMS and much cheaper than the 56‐run pooled
estimate. Moreover, halving the number of initializations used yields qualitatively similar results.

Figure 9 shows timeseries of x0(t) (both control and perturbed) and error growth for two such ensembles from the
high and low stochastic forcing cases. The time axis is truncated to 10 days past initialization. The early linear
growth of ϵ versus tϵ indicates a steady decline in relative growth rate, meaning that the perturbations begin to
enter the diffusive (sub‐exponential) growth regime quite early. This is thanks to stochastic forcing, which is
visible in the top row as the emergence of red members from the shadow of the control trajectory. As expected, the
error growth is much faster for the higher value of stochastic forcing.
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If the optimal δ could be predicted from the error growth rates alone, the TEAMS algorithm could be calibrated
simply and cheaply before being deployed. As a first estimate, we looked for the time until a certain fraction of
saturation is reached that matches the timescale for advance splitting and found that a fraction 3/8 worked well.
This result is purely empirical, and deserves further theoretical consideration in future work. More specifically,
Figure 10 shows the time t3/8 when RMSE reaches a fixed fraction of RMSD (3/8) as compared to the optimal δ
values determined from Figure 8, as a function of the strength of stochastic forcing. We include results from
forcing at wavenumbers m = 1, 4, 7, 10. There is an encouraging similarity between the dependence of δopt and
t3/8 on stochastic forcing strength, suggesting that the fractional saturation time might be a useful proxy for the
optimal advance split time.

Another interesting and less obvious feature is the dependence on wave-
number of error growth (albeit a weak dependence): medium‐length wave
forcing (m = 4 and m = 7) drives error to saturation faster than very short
(m = 10) or long (m = 1) wave forcing, which informed our choice of m = 4
throughout the TEAMS experiments. However, the variability due to initial
conditions (indicated by±1σ error bars) tend to exceed systematic differences
between wavenumbers. This variability reflects a distribution of divergence
timescales across the attractor, which was also found be quite heterogeneous
in Maiocchi et al. (2024) (there measured by Lyapunov exponents). It also
suggests that the best strategy may be to not fix a single δ, but to allow the
algorithm to adaptively set a δ, or sample from a range, to account for
differing divergence timescales between different initial conditions, and this
could be investigated in future work.

5. Conclusions and Outlook
A gap exists between the needs of climate risk research and our current
approaches to probabilistic and physical modeling of extremes. Large
ensemble simulations provide many physical realizations of extreme
events, but tend to under‐resolve small‐scale processes. Statistical modeling
(e.g., with extreme value theory) can provide reliable estimates of marginal
probability distributions, but is not equipped to model the joint distribution

Figure 9. Growth of perturbations in the experiments described in Section 4.2 for one representative initialization time t0 = 70 and two values of the stochastic forcing:
(a, c) F4 = 3 and (b, d) F4 = 0.25. Panels (a, b) show x0(t) for the control simulation (black) and 16 simulations with the same initial condition but different white‐noise
forcing realizations (red). Panels (c, d) show Euclidean distance between each ensemble member to the control as a fraction of RMSD versus time (red), and the fraction
of saturation RMSE/RMSD versus the time until each ϵ value is reached averaged across all initializations and ensemble members (black), that is, ϵ versus tϵ. Dots
indicate ϵ = 1/32, 1/16, 1/8, 1/4, 3/8, 1/2, and these same values reflected about 1/2.

Figure 10. Time t3/8 until the perturbations described in Section 4.2 reach a
fixed fraction (3/8) of RMSD as a function of stochastic forcing strength Fm
for different wavenumbers m. Error bars are ±1 standard deviation of the
distribution over different initial conditions. Optimized values of δ
(determined from the performance metrics in Figure 8) are shown in the
black dashed line for m = 4.
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of dynamical variables within a storm. This has motivated ensemble boosting and other techniques related to
storylines (Gessner, 2022; Gessner et al., 2021). Unfortunately, probabilistic precision is then lost due to
sampling bias.

Rare event algorithms represent an attractive potential solution to combine the advantages of both approaches,
generating both dynamical samples and probabilities of extreme events thanks to careful re‐weighting of cloned
trajectories. Inspired by recent successes of rare event algorithms on long‐lasting heat waves (Ragone et al., 2018)
and idealized models of regime transitions (Jacques‐Dumas et al., 2023; Lucente, Rolland, et al., 2022), we have
investigated the ability of a particular algorithm, adaptive multilevel splitting (AMS) to sample extreme events of
a different character: intermittent, short‐lived bursts of energy in the Lorenz‐96 model which have some similar
characteristics as extreme daily rain or wind associated with midlatitude cyclones.

Even in this simple model, we have elucidated some key obstacles that hinder rare event splitting algorithms
on sudden, short‐lived events, and furthermore taken some steps to overcome them. AMS sets up a sequence
of thresholds for an observable of interest and estimates conditional exceedance probabilities in stages by
cloning and perturbing “successful” ensemble members when they cross a threshold, to generate new “suc-
cessful” samples. This simple prescription suffers a fatal problem when the events are short‐lived compared to
the divergence timescale (how long it takes a perturbation to grow appreciably): a perturbed ensemble
member essentially replicates its parent's success, and doesn't develop its own history until after the event is
over. Neither the magnitude nor the diversity of rare event samples is enhanced. To fix this problem, we have
drawn inspiration from ensemble boosting to apply a perturbation in advance of the rare event by some lead
time δ. But we have also retained rigorous statistics for these “storylines” by exploiting a more general rare
event algorithm, subset simulation (SS), of which AMS is only a special case. We name the resulting al-
gorithm “trying‐early AMS” (TEAMS) and demonstrate its success in sampling the tails of the rare event
distribution more efficiently than direct numerical simulation can do, despite an extra computational cost due
to rejected samples. Our method has some similarities with previously developed algorithms to overcome
“extinction” in the rare event ensemble (Bréhier et al., 2016; Ching, Beck, & Au, 2005; Rolland, 2022), but
ours is distinct in using the separation timescale as the key algorithmic parameter to calibrate. Early splitting
seems essential for the extremes mediated by traveling waves that we consider here, with implications for
sampling of phenomena like heavy precipitation from extratropical cyclones. Other classes of events may
have different timescale characteristics that modify the necessity of early splitting.

Our study is a proof of concept that suggests a path forward, but with some open questions and directions for
improvement, which we summarize here:

• The most crucial algorithmic parameter is the advance split time, δ, which is equivalent to a proposal dis-
tribution width. Our grid search for optimal δ, though not a scalable solution, demonstrates a relationship with
the time over which perturbations grow to a fraction of saturation. An important goal for future work is to
assess this result for other underlying models such as general circulation models or for other error growth
metrics. Given the localized nature of our observable (x20 is the energy at a single longitude site), it is inter-
esting that a global Euclidean metric correlates with the optimal δ. Weighting the metric more heavily for grid
points near k = 0 might further improve this relationship.

• The weak stochastic forcing limit Fm → 0 is important to confront for climate models, which may be more
practical to perturb just at the splitting time rather than continuously at every time step, especially if the
climate model is not already equipped with a stochastic subgrid parameterization. In the TEAMS framework,
this would translate to perturbing a simulation at a lead time δ ahead of the event, but not at all following times.
Perturbing at just one time makes a given perturbation magnitude less powerful—but also opens up interesting
possibilities such as the use of deterministic optimization strategies to more efficiently discover the most
extreme event possible from a given initial condition. For example, some directions of perturbation (singular
vectors) grow much faster than others, a fact which has informed ensemble design in operational weather
forecasting (Palmer & Zanna, 2013), and could be used to further improve the algorithm. Methods such as
conditional nonlinear optimal perturbation (Wang et al., 2020, and references therein), generalized stability
theory (Farrell & Ioannou, 1996), and large deviation theory (Dematteis et al., 2018, 2019; Schorlepp
et al., 2023) may prove useful for this task.
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• Related to the previous point, it is desirable to have greater efficiency with samples in order to deploy rare
event algorithms at scale. For example, we should not simply discard rejected samples, but rather learn from
their “mistakes” to design better perturbations. Frameworks like Bayesian optimization and adaptive
importance sampling based onmodel reduction have been developed for this task, and have been used in safety
assessment for reliability engineering (e.g., Cousins & Sapsis, 2014; X. Huang et al., 2016; Mohamad &
Sapsis, 2018; Sapsis, 2020; Uribe et al., 2021; Zhang et al., 2022).

Rare event algorithms represent a new way to allocate computational resources to where they matter most. To
realize their considerable potential for efficiency gains, we have taken one of the necessary steps to make them
flexible enough to target intermittent, localized, transient events that characterize phenomena such as heavy
precipitation in complex global climate models. The Lorenz‐96 model is an invaluable prototype as a cheap
system that poses similar algorithmic challenges. Forthcoming papers will use the insight gained here as a
stepping stone to more complex and realistic models, where the combination of physical storylines and associated
probabilities can yield useful insights for climate science and climate risk assessment.

Data Availability Statement
The software to simulate and sample extreme events in Lorenz‐96 using TEAMS is available in a public Zenodo
repository at https://zenodo.org/doi/10.5281/zenodo.10608187 (justinfocus12, 2024). Interested readers are
encouraged to try out the algorithm on other systems of interest, and should not hesitate to contact J. F. for
assistance.
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