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The velocity-scalar cross spectrum of stretched spiral vortices
P. A. O’Gormana) and D. I. Pullin
Graduate Aeronautical Laboratories 105-50, California Institute of Technology, Pasadena, California 91125

~Received 2 July 2002; accepted 17 October 2002; published 19 December 2002!

The stretched-spiral vortex model is used to calculate the velocity-scalar cross spectrum for
homogeneous, isotropic turbulence in the presence of a mean scalar gradient. The only nonzero
component of the cospectrum is that contributed by the velocity component in the direction of the
imposed scalar gradient while the quadrature spectrum is identically zero, in agreement with
experiment. For the velocity field provided by the stretched-spiral vortex, the velocity-scalar
spectrum can be divided into two additive components contributed by the velocity components
along the vortex axis, and in the plane normal to this axis, respectively. For the axial velocity field,
a new exact solution of the scalar convection-diffusion equation is found exhibiting scalar variation
in the direction of the vortex tube axis. An asymptotic expression was found for the cospectrum
contributed by this solution and the axial velocity, with the leading order term showing ak25/3

range. This term is produced by the winding of the initial axial velocity field by the axisymmetric
vortex core. The next order term gives ak27/3 range, and arises from the lowest order effect of the
nonaxisymmetric vorticity on the evolution of the axial velocity. Its coefficient can be of either sign
or zero depending on the initial conditions. The contribution to the cospectrum from the velocity in
the plane of the vortex is also calculated, but no universal high wave number asymptotic form is
found. The integrals are evaluated numerically and it is found that the resulting cospectrum does not
remain of one sign. Its form depends on the choice of the vortex core velocity profile and time cutoff
in the spectral integrals. The one-dimensional cospectrum contributed by the axial velocity is
compared with the experimental data of Mydlarski and Warhaft@J. Fluid Mech.358, 135–175
~1998!#. © 2003 American Institute of Physics.@DOI: 10.1063/1.1527916#
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I. INTRODUCTION

The problem of turbulent scalar mixing shares many
the features of the classical turbulence problem, and has
portant applications in areas such as turbulent combus
and dispersion in both geophysical and environmental flo
It is of interest to apply methods that have been shown
provide quantitative results for the energy spectrum to
problems of scalar spectra and cross spectra in turbu
flows, one example being the recent use of the stretc
spiral-vortex model to calculate the scalar spectrum1 for ho-
mogeneous but nonisotropic turbulence. As is noted be
the real part of the velocity-scalar cross spectrum gives
distribution of the scalar flux across scales, and thus is in
esting for problems in turbulent heat transfer. Also, becau
mean scalar flux can only occur as a result of anisotropy,
interesting to know how quickly the cross spectrum dec
with increasing wave number. If, as is thought, the cro
spectrum decays faster than the scalar or energy spectra
this is a measure of the approach to isotropy at the sma
scales. In addition, because the total scalar flux repres
transport in the scalar advection-diffusion equation, kno
edge of the cross-spectral properties of vortex-models is
pected to be useful in their application to the building
subgrid scalar-flux and mixing models for use in large-ed
simulation.2

a!Author to whom correspondence should be addressed. Mail Stop 20
Caltech, Pasadena, CA 91125; electronic mail: pog@caltech.edu
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If we define the velocity-scalar correlation by

Ruic
~r !5ui~x!c~x1r !, ~1!

then the one-dimensional velocity-scalar cross spectrum
given by

Fuic
1d ~k3!5

1

2p E
2`

`

Ruic
~0,0,r 3!e2 ik3r 3 dr3 . ~2!

In general the cross spectrum may be complex and can
split into real and imaginary parts as

2 Fuic
1d ~k3!5Cuic

1d ~k3!2 i Quic
1d ~k3!, ~3!

where Cuic
1d (k3) is the cospectrum andQuic

1d (k3) is the

quadrature spectrum.3 The quadrature spectrum is related
phase differences between the Fourier components of
scalar and the velocity fields. In Appendix A the quadratu
spectrum is shown to be zero for the case of isotropic tur
lence and a mean scalar gradient. The integral of the cos
trum over all wave numbers is equal to the scalar flux,

uic5E
0

`

Cuic
1d ~k3!dk3 . ~4!

While considering the effect of buoyancy on the ener
spectrum, Lumley4 used a similarity hypothesis to predict th
shell-summed cospectrum of the velocity and potential te
perature in the inertial-convective range. If the gravitation
5,
© 2003 American Institute of Physics
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281Phys. Fluids, Vol. 15, No. 2, February 2003 The velocity-scalar cross spectrum of stretched spiral vortices
force is set to zero, then the absolute and potential temp
tures are the same, and Lumley’s Eq.~12! for the cospectrum
simplifies to

Cu1c~k!;me1/3k27/3, ~5!

wheree is the mean energy dissipation andm is the mean
scalar ~temperature! gradient in the ‘‘1’’-direction. We are
assuming the flow is such that temperature is approxima
a passive scalar, and the turbulent velocity field is isotro
Note that Eq.~5! follows from dimensional analysis if the
cospectrum depends only onk, e andm.

Mydlarski and Warhaft5 studied the velocity-temperatur
cross spectrum in a wind tunnel for Taylor Reynolds nu
bers as high as 582. Fluctuations in the passive tempera
field were generated by imposing a linear mean tempera
gradient across the tunnel. The resulting cross spectrum
noisier than the energy or scalar spectra, and this was
plained by noting that no mathematical limitation keeps
spectrum either positive or negative. Nonetheless their
sults indicate that the quadrature spectrum is close to z
while the cospectrum exhibited ak22 range at largeRl .

The stretched spiral-vortex model of turbulence, int
duced by Lundgren,6 uses an ensemble of vortex tubes
model the fine scales of turbulence. The vortex tubes do
interact except in that they are stretched on average by
surrounding flow. The vortex tubes are assumed to
straight, with no dependence of the velocity field on the
ordinate parallel to the tube axis. In each tube the vorticity
evolved by the Navier–Stokes equations and the scala
evolved by the convection-diffusion equation. The axial v
ticity, the axial velocity and the scalar are each wound
into spirals by the differential rotation of the cores of t
vortices. Average flow statistics are calculated by perform
an average over time and space. This model gives good
sults for energy6 and scalar spectra1 individually. By also
performing an average over vortex orientation the model w
used to calculate vorticity and velocity-derivative moment7

as well as one dimensional spectra.8

There have been few attempts to calculate the veloc
scalar cross spectrum; see for example the EDQNM calc
tions of Herr, Wang and Collins.9 In this paper we propose t
calculate the cross spectrum using the stretched spiral-vo
model. To model the experiment of Mydlarski and Warhaft
mean scalar gradient is imposed and an isotropic turbu
velocity field is assumed, with the vortex tubes oriented w
equal probability in all directions. In Sec. II asymptotic e
pressions for the evolution of the velocity and scalar fields
the vortex tube are described. A new feature of the pres
analysis is that the scalar can now show variation paralle
the vortex axis, and so its evolution is influenced by the ax
velocity. This is important because the scalar and the a
velocity evolve in a similar way, unlike the scalar and
given planar component of the velocity, leading to an imp
tant contribution to the velocity-scalar correlation. In Sec.
expressions are derived for the cross spectrum contribute
the axial velocity and also the velocity in the plane of t
vortex. It is found that the only nonzero cross spectrum
that of the scalar and the velocity in the direction of t
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scalar gradient. In Sec. IV the expressions for the cross s
trum are evaluated for a particular choice of initial cond
tions. The contribution from the axial velocity is evaluate
using its asymptotic form for high wave number, but t
contribution from the velocity in the plane of the vortex ca
only be evaluated numerically.

II. EVOLUTION OF THE SCALAR AND THE VELOCITY
IN A STRETCHED VORTEX TUBE

We wish to find the evolution of the velocity and scal
fields in a vortex tube embedded in a background linear
locity field. For convenience letxi now be vortex fixed axes
wherex3 is aligned with the vortex tube axis, and letxi8 be
the laboratory coordinates. The velocity field of the vort
tube is assumed independent of the axial coordinatex3 , but
may have a component in the direction of the vortex ax
The scalar is a function of all three spatial coordinates. T
following analysis generalizes that of Pullin and Lundgre1

hereafter referred to as PL, by letting the scalar have anx3

dependence. The effect of this change on the scalar spec
is discussed in Appendix B.

The Navier–Stokes equations for the velocityv i and the
vorticity v i are

]v i

]t
1v j

]v i

]xj
52

]P

]xi
1n¹2v i , ~6!

]v i

]t
1v j

]v i

]xj
5v j

]v i

]xj
1n¹2v i , ~7!

and the convection-diffusion equation for the sca
c(x1 ,x2 ,x3 ,t) is

]c

]t
1v j

]c

]xj
5D ¹2c, ~8!

whereP is the pressure-density ratio,n is the viscosity and
D is the scalar diffusivity. The velocity field is decompose
as

v i5ui~x1 ,x2 ,t !1ai~ t !xi ~9!

with a11a21a350 anda3.a2.a1 . Summation overi is
not implied. If the support of the vorticity is compact in
domain surroundingx15x250 then the velocity can be ex
pressed in terms of a vector potentialc i(x1 ,x2 ,t) as

u15
]c3

]x2
, u252

]c3

]x1
, u35

]c2

]x1
2

]c1

]x2
. ~10!

Now choose the gauge ofc i so that]c i /]xi50. Then

v i~x1 ,x2 ,t !52¹2
2c i , ¹2

2[
]2

]x1
2 1

]2

]x2
2 . ~11!

We also define a reduced pressureP* as follows:

P* ~x1 ,x2 ,t !5P1 1
2 ~a1

2x1
21a2

2x2
21a3

2x3
2!. ~12!

Then we have the following equations forv3 , u3 andc:
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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]v3

]t
1S a1x11

]c3

]x2
D ]v3

]x1
1S a2x22

]c3

]x1
D ]v3

]x2
1a3v3

5n¹2
2v3 , ~13!

]u3

]t
1S a1x11

]c3

]x2
D ]u3

]x1
1S a2x22

]c3

]x1
D ]u3

]x2
1a3u3

5n¹2
2u3 , ~14!

]c

]t
1S a1x11

]c3

]x2
D ]c

]x1
1S a2x22

]c3

]x1
D ]c

]x2

52~a3x31u3!
]c

]x3
1D¹2c. ~15!

It can be seen that Eqs.~13! and~11! ( i 53) are sufficient to
determinev3(x1 ,x2 ,t) and c3(x1 ,x2 ,t). Once these are
solved Eq.~14! can be solved foru3(x1 ,x2 ,t), and finally
Eq. ~15! can be solved forc(x1 ,x2 ,x3 ,t).

We wish to consider the case where there is a m
gradient,m, in the scalar in the lab frame. We will assume t
mean gradient is along thex18 axis, wherexi8 are lab coordi-
nates. The scalar field at time zero may then be decomp
as the sum of the linear gradient fixed in the lab frame, an
fluctuationc8(x,0)5c8(x1 ,x2 ,x3,0),

c~ t50!5m x181c8~x,0! ~16!

5m~E11x11E21x21E31x3!1c8~x,0!, ~17!

where Ei j ~a,b,g! is a rotation matrix describing a rotatio
from the xi8 axes to thexi axes, such thatxj85Ei j xi , and

where ~a,b,g! are the corresponding Euler angles.8 Noting
that the equation governing the scalar is linear, we dec
pose the scalar field at timet as

c~x,t !5E11c1~x,t !1E21c2~x,t !1E31c3~x,t !1c8~x,t !,
~18!

where

ci~x,0!5m xi , ~19!

and each ofc1 ,c2 ,c3 ,c8 solve Eq. ~15!. We now further
specialize to the case of a time independent axisymme
strain field, a15a252a/2,a35a, a.0, and also set the
Schmidt number equal to unity, Sc5n/D51.

A. Solution for c 3 in terms of u 3

We begin by defining the material derivativeD/Dt
5]/]t1v i ]/]xi and temporarily setn5D50. Then we can
rewrite Eq.~15! for c3 asDc3 /Dt50, and it is clear thatc3

is conserved along pathsXi(t) that satisfy dXi /dt5v i .
Therefore, using the initial condition~19! we have that
c3(x,t)5m X3(0) whereXi(t)5xi . We can also rewrite Eq
~14! as Du3 /Dt52a u3 , so that u3(X,t)5exp(2a t)u30

whereu30
is a constant, and

dX3~ t !

dt
5a X3~ t !1e2a t u30. ~20!

This equation can be solved to give
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X3~0!5X3~ t ! e2a t2u3~x1 ,x2 ,t !
1

a
sinh~at!, ~21!

so that

c3~x,t !5m S e2a tx32u3~x1 ,x2 ,t !
1

a
sinh~a t! D . ~22!

It is easily verified by direct substitution that this sol
tion ~22! for c3 is also valid in the case whennÞ0 if Sc
5n/D51. The Schmidt number was 0.71 in the experime
of Mydlarski and Warhaft.5 To simplify the analysis, we sub
sequently assume Sc51.

B. Solutions for c 1 , c 2 and the axial velocity and
vorticity

Both c1 andc2 have nox3 dependence initially, and so
from Eq.~15! it is clear that they will be independent ofx3 at
later times. We are thus motivated to study solutions to
~15! when there is nox3 dependence,

]c

]t
1S a1x11

]c3

]x2
D ]c

]x1
1S a2x22

]c3

]x1
D ]c

]x2
5D¹2c.

~23!

It is convenient to work in polar coordinates (r ,u) with x1

5r cosu, x25r sinu, and introduce the transformation6

S~ t !5ea t,

r5S~ t !1/2 r ,

t5
1

a
~S~ t !21!,

c3~r ,u,t !5c̃3~r,u,t!, ~24!

v3~r ,u,t !5S~ t ! ṽ3~r,u,t!,

u3~r ,u,t !5S~ t !21 U3~r,u,t!,

c~r ,u,t !5C~r,u,t!.

Equations~14! and~23! can then be expressed in essentia
the same form

]f

]t
1

1

r
S ]c̃3

]u

]f

]r
2

]c̃3

]r

]f

]u
D 5k ¹2

2 f, ~25!

where~f,k! are either (U3 ,n) or (C,D). Approximate solu-
tions for ṽ3 , c̃3 , U3 andC can be found using a two time
analysis.1 These solutions are asymptotically correct for lar
t. The solution for the axial vorticity and the stream functio
takes the form

ṽ35(
2`

`

vn~r,t! exp~ i n u!, v2n5vn* , ~26!

c̃35(
2`

`

cn~r,t! exp~ i n u!, c2n5cn* , ~27!

where the Fourier coefficients, fornÞ0, are

vn~r,t!5 f n~r! exp~2 i n V~r! t2n n2 L2 t3/3!, ~28!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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cn~r,t!5t22 hn~r! exp~2 i n V~r! t2n n2 L2 t3/3!,
~29!

with

hn~r!5
f n~r!

n2 L2 , L~r!5
dV~r!

dr
. ~30!

Theu averaged angular velocityV~r! is related to the zeroth
harmonic of the vorticity and toc0 by

v0~r!5
1

r

]~r2V!

]r
, V~r!52

1

r

]c0

]r
. ~31!

It should be noted that we assumeL,0 in order for the
expansion in larget to be valid. The expressions forvn are
valid to O(1) for nÞ0. Howeverv0 ~and henceV! is con-
stant in time to within terms of ordert22. The functions
f n(r) may be viewed as initial conditions that define a spi
vortex structure although the solution is of course only va
for larget. The above solution for the axial vorticity esse
tially describes the winding of the nonaxisymmetric part
the vorticity field by the axisymmetric part~the core!. The
solution for the stream function may be rewritten in the fo

c̃35c̃ (0)1t22 c̃ (2),

c̃ (2)5 (
2`,nÞ0

`

c̃n
(2) exp~ i n~u2Vt!!, ~32!

c̃n
(2)5hn~r! exp~2n n2 L2 t3/3!.

The asymptotic solutions for the scalar and the axial velo
are then given by~to ordert21)

C~r,u,t!5C(0)1t21 (
2`,nÞ0

`

Cn
(1) exp~ i n~u2V t!!,

C(0)5(
2`

`

Cn
(0)~r,t! exp~ i n~u2V t!!,

~33!
Cn

(0)5Ĉn
(0)~r!exp~2D n2 L2 t3/3!,

Cn
(1)5

i

r (
2`,mÞ0

` S m c̃m
(2)

] Cn2m
(0)

] r
2~n2m!

] c̃m
(2)

] r
Cn2m

(0) D ,

U3~r,u,t!5U (0)1t21 (
2`,nÞ0

`

Un
(1) exp~ i n~u2V t!!,

U (0)5(
2`

`

Un
(0)~r,t! exp~ i n~u2V t!!,

~34!
Un

(0)5Ûn
(0)~r!exp~2n n2 L2 t3/3!,

Un
(1)5

i

r (
2`,mÞ0

` S m c̃m
(2)

] Un2m
(0)

] r
2~n2m!

] c̃m
(2)

] r
Un2m

(0) D ,

where the initial scalar field is given by the functionsĉn
(0)(r)

and the initial axial velocity field is given by the function
Ûn

(0)(r). It should be emphasized that this scalar solution
only valid when the initial conditions have nox3 depen-
dence, as is the case forc1 andc2 .
Downloaded 21 Nov 2003 to 131.215.119.76. Redistribution subject to A
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III. THE CROSS SPECTRUM

We will first consider the shell-summed cross spectr
defined by

Fu
i8c~k!5

1

~2p!3 E
S
E

V
Ru

i8c~r 8!e2 i k8•r8 dr 8 dVk8 , ~35!

where as before primed quantities indicate the lab frame,
of coursek5k8. The integral overV indicates a volume
integral that may be taken as over all space. The integral o
S indicates a surface integral over a spherical shell in wa
number space. The shell-summed cross spectrum is rea
may be seen by making the change of integration variab
k8 to 2k8, and it integrates to the scalar flux,

ui8c5E
0

`

Fu
i8c~k!dk. ~36!

We suppose there is a box populated by a collection
stretched vortex tubes. The vortex tubes do not interact
cept in that each vortex tube is stretched on average by
other vortex tubes. We assume that the vortex structures
distributed sparsely enough so that the overlapping velo
and scalar fields from the vortex tubes do not contrib
strongly to the fine scales. It is further assumed that a sta
tical equilibrium has been reached whereby the structures
created and decay at the same rate. The average in the
nition of the scalar-velocity correlation~1! is then interpreted
as an average over time, space, vortex orientation, and in
conditions of one vortex tube,

Ru
i8c~r 8!5NcK K E

0

tcE
V
ui8~x8,t !c~x81r 8,t !dx8 dtL

VO
L

IC

,

~37!

whereNc is the rate of creation of vortex tubes per unit tim
and per unit volume,tc is a typical vortex lifetime,̂ & IC in-
dicates an average over initial conditions, and^&VO indicates
an average over vortex orientation. The average over vo
orientation is defined using the Euler anglesa,b,g that rotate
the lab frame to the vortex fixed frame,8

^ f ~Ei j !&VO5
1

8p2 E
0

2pE
0

2pE
0

p

f ~Ei j ! P~a,b,g!

3sina da db dg, ~38!

where P(a,b,g) is the probability density function of the
Euler angles. To match with experiment we specialize to
case of an isotropic velocity field and setP51 so that all
orientations are equally likely. We now rewrite Eq.~35! by
changing the ordering of the averages, substitutingui8
5Eji uj and changing integration variables fromr 8 to r , from
k8 to k, and fromx8 to x,
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Fu
i8c~k!5

Nc

~2p!3 K K E
S
E

V
E

0

tcE
V
Eji uj~x,t ! c~x1r ,t !

3e2 i k"r dx dt dr dVk L L . ~39!

A. Simplification using symmetries in the distribution
of initial conditions

Next we use some symmetries in the distribution of
initial conditions of the velocity and the scalar to simpli
Eq. ~39!. For a given vortex tube let the initialu3 distribution
be u30 ~say at the time when the tube is created!. We will
consider the effects of the transformationu30 to 2u30.
Clearly u3(x,t) changes to2u3(x,t) because Eq.~14! is
linear and homogeneous. It is also clear thatu1 and u2 are
unaffected as they have nox3 dependence. From Eq.~19! we
see that initially]c1 /]x35]c2 /]x350. Then by taking the
partial derivative with respect tox3 of Eq. ~15! we see that
]c1 /]x35]c2 /]x350 for all times. It is then clear from Eq
~15! that u3 has no influence on the evolution ofc1 or c2 .
Finally, it is clear that the first term in expression~22! for c3

is unaffected by changes inu30 , and that the second term
will change sign whenu30 changes sign.

Therefore, if we assume that for each initial distributi
of velocities u1(x,0) and u2(x,0) that u3(x,0)5u30 is as
likely as u3(x,0)52u30, then performing the average ove
the initial conditions will eliminate some terms that we no
neglect. At this stage we also neglect the fluctuation termc8
in the expression~18! for c(x,t). This may be justified by
noting thatc8(x,t) depends linearly onc8(x,0), and making
the approximation thatc8(x,0) anduj (x,0) are statistically
independent. We therefore replaceEji uj (x,t) c(x1r ,t) in
expression~39! with

@E1iu11E2iu2#~x,t ! @E11c11E21c2

1E31m e2at x3#~x1r ,t !

2E3iu3~x,t ! FE31m u3

1

a
sinh~at!G~x1r ,t !. ~40!

For simplicity we now replace the average over init
conditions with one particular initial condition. Using th
integrals

1

8p2 E Ei j Ek1 sina da db dg5
1

3
d ikd j 1 ~41!

to perform the orientation average givesFu
28c5Fu

38c50 and

Fu
18c~k!5

1

3

Nc

~2p!3 E
S
E

V
E

0

tcE
V
Fu1~x,t ! c1~x1r ,t !1u2~x,t !

3c2~x1r ,t !2u3~x,t ! m
1

a
sinh~at! u3~x1r ,t ! G

3e2 i k"r dx dt dr dVk . ~42!

Noting thatu1 ,u2 ,u3 ,c1 ,c2 have nox3 dependence we ca
replace Nc *0

tc*V dx dt with N *0
tc*2`

` *2`
` dx1 dx2 S(t) dt

whereN is the rate of creation of vortex length per unit tim
Downloaded 21 Nov 2003 to 131.215.119.76. Redistribution subject to A
e

l

and per unit volume, and the factorS(t) arises from the
lengthening over time of the vortex tube. Defining the tw
dimensional Fourier transform of a functionf (x1 ,x2) by

f̂ ~k1 ,k2!5
1

4p2 E
2`

` E
2`

`

e2 i k1x12 i k2x2

3 f ~x1 ,x2! dx1 dx2 , ~43!

and dividing the expression~42! into contributions from the
axial velocity ~a! and planar velocity~p!, we find that

Fu
18c~k!5Fu

18c
(p)

~k!1Fu
18c

(a)
~k!, ~44!

where

Fu
18c

(p)
~k!5

N~2p!2

3 E
0

tcE
0

2p

~ û1 ĉ1* 1û2 ĉ2* !k duk S~ t ! dt,

~45!

Fu
18c

(a)
~k!52

N~2p!2

3 E
0

tcE
0

2pS m
1

a
sinh~at! û3 û3* D

3k duk S~ t ! dt, ~46!

andk15k cosuk andk25k sinuk .

B. Contribution from the planar velocity: Fu 18c
„p …

We now consider the contribution to the cross-spectr
from correlations between the planar velocities andc1 andc2

in Eq. ~45!. We can simplify the analysis by relatingû to v̂3 .
Usingv i5e i jk ]uk /]xj , assuming that the velocity field de
cays sufficiently quickly asx1 or x2 become large, and de
fining k350 gives v̂ l5 i e lmn kmûn . The assumption of in-
compressibility giveskl ûl50. Thereforeûl is orthogonal to
kl and v̂ l , and

ûl5a e lmn km v̂n52a i k2ûl . ~47!

Thus the scalar a is determined and ûl(k1 ,k2)
5 i k22 e lmn km v̂n . We are interested in the components
the velocity in the plane,

û1~k1 ,k2!5
i

k
sinuk v̂3 , û2~k1 ,k2!52

i

k
cosuk v̂3 .

~48!

Then from Eq.~45! we have that

Fu
18c

(p)
~k!5

1

3
i N ~2p!2 E

0

tcE
0

2p

v̂3~sinuk ĉ1* 2cosuk ĉ2* !

3duk S~ t ! dt. ~49!

Letting

v35 (
n52`

`

vn~r ,t !exp~ i n u!, ~50!

and using

E
0

2p

exp~ i n u2 ikr cos~u2uk!! du

5~2 i !n2pJn~kr !exp~ i n uk!, ~51!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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gives

v̂35
1

2p (
n52`

`

~2 i !n exp~ i n uk! I n
v~k,t !, ~52!

where

I n
v~k,t !5E

0

`

vn~r ,t ! Jn~k r ! r dr . ~53!

We will use the solution~33! for c1 andc2 , but will neglect
terms of ordert21. Using the initial conditions~19! we see
that for c1

Ĉ1
(0)5

m r

2
, Ĉ21

(0)5
m r

2
, ~54!

and that forc2

Ĉ1
(0)52

i m r

2
, Ĉ21

(0)5
i m r

2
. ~55!

Note that because the solutions for the scalar and the vo
ity are only valid asymptotically in time, we should speci
the initial conditions at some initial timet1.0. However, we
make the approximationt1→0, and the resulting integral
are convergent at time zero.

It is convenient to define

I c5
m

2 E
0

`

exp~2 i V~r! t2D L~r!2 t3/3!

3J1~k r ! r r dr

5
m

2~11at!
E

0

`

exp~2 i V~r! t2D L~r!2 t3/3!

3J1S k r

A11at
D r2 dr. ~56!

Then usingJ2152J1 and Eq.~51! we have that

ĉ15
1

2p
~~2 i ! exp~ i uk! I c1~2 i !21

3exp~2 i uk! ~2I c!* !, ~57!

ĉ25
1

2p
~~2 i ! exp~ i uk! I c ~2 i !1~2 i !21

3exp~2 i uk! ~2I c!* i !. ~58!

Substituting Eqs.~57!, ~58!, and ~52! into ~49!, and after
some algebra we find

Fu
18c

(p)
~k!5

1

3
N E

0

tcE
0

2p

i (
n52`

`

~2 i !n exp~ i n uk!

3I n
v ~~ I c!* 2I c! duk S~ t ! dt. ~59!

Therefore onlyn50 makes a contribution and

Fu
18c

(p)
~k!5

4p

3
N E

0

tc
I 0

v Im~ I c! S~ t ! dt. ~60!
Downloaded 21 Nov 2003 to 131.215.119.76. Redistribution subject to A
ic-

Finally we can evaluateI 0
v in terms of V(r 8,0) as

follows:

I 0
v5E

0

`

J0~k r ! v0~r ,t !r dr

5E
0

`

J0S k r

A11at
D ṽ0~r,t!r dr, ~61!

where ṽ0(r,t) is the u average ofṽ3(r,u,t). Note that
unlike the analysis in Sec. II whereV was taken as constan
in time in the asymptotic solution for the scalar and vortic
spirals, we must now take into account the evolution in tim
of V(r 8,t) andṽ0(r 8,t). It is easy to show thatṽ0 evolves
according to a heat equation in a cylindrical geometry.7 This
can be solved using a Green’s function in terms of the v
ticity distribution att50,

ṽ0~r,t!52pE
0

`

ṽ0~r 8,0!

3F 1

4pnt
expS 2~r21r 82!

4nt D I 0S rr 8

2nt D G r 8 dr8. ~62!

Substituting this into Eq.~61! and performing ther integral
gives

I 0
v5expS 2ntk2

11at D E
0

`

J0S r 8k

A11at
D ṽ0~r 8,0! r 8 dr8.

~63!

If we use Eq.~31! to relatev0 to V and note thatv0 andṽ0

coincide att50, we find that

I 0
v5expS 2ntk2

11at D k ~11at!21/2

3E
0

`

J1S r 8k

A11at
D V~r 8,0! r 82 dr8. ~64!

This expression forI 0
v cannot be evaluated using the meth

of stationary phase unlike the corresponding integrals
higher harmonics. ThereforeFu

18c
(p)

(k) does not have a univer

sal form at high wave number, and in fact depends on
choice ofV(r 8,0). However, once again the contribution
the cross spectrum has no imaginary part. Combining E
~60!, ~56! and ~64! gives

Fu
18c

(p)
~k!5

2p m

3
k N E

0

tc
expS 2ntk2

11at D ~11at!23/2

3S~ t ! L1~t,k! L2~t,k! dt, ~65!

where

L1~t,k!52E
0

`

J1S k r

A11at
D sin~V t!

3exp~2D L2 t3/3! r2 dr, ~66!

L2~t,k!5E
0

`

J1S r 8k

A11at
D V~r 8,0! r 82 dr8. ~67!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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This expression is evaluated for a particular choice of vor
core in Sec. IV.

Unlike the calculation ofFu
18c

(a)
discussed in the next sec

tion, here we only calculate the lowest order contribution
Fu

18c
(p)

. This is because of the complexity involved in procee

ing to higher order, and also because, as we have seen
asymptotic form ofFu

18c
(p)

is dependent on the initial cond

tions. We will use this lowest order contribution in Sec. IV
show that the planar contribution is comparable in magnit
to the axial contribution.

C. Contribution from the axial velocity: Fu 18c
„a…

We now wish to consider the contribution from correl
tions between the axial velocityu3 and the second term o
c3 . Using expression~46! and defining

u3~r ,u,t !5 (
n52`

`

u3,n~r ,t ! exp~ i n u!, ~68!

we find that

Fu
18c

(a)
~k!52

m

3a
k N 2pE

0

tc

(
n52`

`

uI nu2 sinh~at! S~ t ! dt,

~69!

where

I n5E
0

`

Jn~kr ! u3,n~r ,t ! r dr . ~70!

This is similar in structure to the expression for the ene
spectrum contributed by the axial velocity.1 Note that this
contribution is negative, consistent with the experimental
sults of Mydlarski and Warhaft.5 We can now use the
asymptotic solution foru3 to evaluateI n . We first consider
the contribution from theU (0) term. Using Eq.~34!, the in-
tegral in r for I n may be evaluated using the method
stationary phase giving

uI nu25
rn uÛn

(0)~rn!u2

S7/2L8~rn! k t n
expS 2

2 n n2 L2~rn!t3

3 D , ~71!

wherern is the point of stationary phase. If we approxima
S(t).a t ~valid for a t@1) thenrn is related tot by

t.S k

n a1/2uL~rn!u D
2/3

. ~72!

We now approximate sinh(at) by 1
2 exp(at) ~making an

O(t22) error! and change integration variable fromt to r

5rn . Using uÛ2n
(0)u5uÛn

(0)u and lettingtc→` we find

Fu
18c

(a)
~k!(0)52

4pmN

9
k25/3a28/3expS 2

2 n k2

3 a D
3 (

n51

`

n2/3E
0

`

r uÛn
(0)~r!u2 uL~r!u2/3dr, ~73!

where we have neglected the zeroth harmonic.
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D. The next order contribution from Fu 18c
„a…

Now consider the next order contribution by includin
terms involvingUn

(1) . We keep only termsO(t21) and use
stationary phase to evaluate ther integral to find

uI nu25
rn ~Ûn

(0)~rn! Un
(1)~rn!* 1Un

(1)~rn! Ûn
(0)~rn!* !

S7/2L8~rn! k t2 n

3expS 2
n n2 L2~rn!t3

3 D . ~74!

Again approximating sinh(at) by 1
2 exp(at) for at@1, chang-

ing variables fromt to rn5r, using uÛ2n
(0)u5uÛn

(0)u and let-
ting tc→` we find

Fu
18c

(a)
~k!(1)52

8pmN

9
k27/3a27/3expS 2

n k2

3 a D
3 (

n51

`

n4/3E
0

`

uL~r!u4/3Re~Ûn
(0)~r!Pn* ! dr,

~75!

where

Pn5 i (
mÞ0

expS 2
n k2 ~m21~n2m!2!

3 a n2 D
3S f m~r!

m L2

]

]r
~Ûn2m

(0) ~r!!

2
n2m

m2 Ûn2m
(0) ~r!

]

]r S f m~r!

L2 D D . ~76!

Again this contribution has no imaginary part and it is un
formly of one sign, although it is not clear if this sign
positive or negative. Note that the coefficient for this cont
bution is an integral involving the initial conditions for th
axial velocity (Ûn

(0)(r)), the axial vorticity (f m(r)) and the
radial derivative of the theta averaged angular velocityL
5dV/dr). The following argument could be made to ma
this coefficient zero. The functionsf n(r ) describe the initial
condition for the axial vorticity. We can write without loss o
generality f n(r )5exp(i n un1i n d) ufn(r)u where theun are
constant offset angles andd then fixes the orientation of the
nonaxisymmetric part of the initial axial vorticity. The
Fu

18c
(a)

(k)(1) only depends ond throughPn* . It is clear that if

we assumed is distributed uniformly for a given set of func
tions Ûn

(0)(r) then Fu
18c

(a)
(k)(1) will be zero. That is, if the

initial conditions for the axial vorticity and the axial velocit
are uncorrelated then this first order correction toFu

18c
(a)

will

give no contribution. Indeed changing the sign of thef m’s
and leaving everything else constant will change the sign
this contribution.

Recall that earlier in the derivation we assumed that
a given initial condition for the velocity in the plane of th
vortex, that either direction was as likely for the initial co
dition of the axial velocity. In other words it was assum
that the statistics of the initial velocity field do not posse
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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chirality. This is consistent with the existence of a correlat
between the orientation of the initial conditions of the ax
velocity and the axial vorticity. Indeed changing the sign
Ûn

(0)(r) has no effect onFu
18c

(a)
(k)(1).

In summary, we have found an expression for the ax
contribution as a sum of two terms. The first term, express
~73!, has ak25/3 power law range. This is produced by th
winding of the initial axial velocity field by the axisymmetri
vortex core. The next order term, expression~75!, has ak27/3

power law range, and arises from the lowest order effec
the nonaxisymmetric vorticity on the evolution of the ax
velocity. We will evaluate Eqs.~73! and~75! in Sec. IV for a
particular choice of initial conditions.

IV. COMPARISON WITH EXPERIMENT

We now evaluate Eqs.~65!, ~73! and~75! for a particular
choice of initial conditions. For simplicity and consisten
we will choose simple initial conditions similar to those co
sidered for the scalar spectrum by PL. We will use a l
vortex as the initial condition for the vortex core so that

V~r,0!5
G

2p r2 , L~r,0!52
G

p r3 . ~77!

A. Contribution of the axial velocity

We first consider the contribution of the axial velocit
The initial condition for the non-axisymmetric component
the axial vorticity is chosen to be

v3~r ,u,0!52 f 0 g~r! sin~2u!, ~78!

so that f 252 i f 0 g and f 225 i f 0 g where f 0 is a dimen-
sional constant. We also assume the initial condition for
axial velocity to be

U3~r ,u,0!52 u0 g~r! cosu, ~79!

so thatÛ1
(0)5u0 g and Û21

(0)5u0 g. Then

Fu
18c

(a)
~k!52

4p m N

9
k25/3a28/3expS 2

2n k2

3 a D u0
2 A0

2
8p m N

9
k27/3a27/3expS 2

2n k2

a D f 0 u0
2 B0 ,

~80!

where

A05E
0

`

r g~r!2 uL~r!u2/3dr, ~81!

B05E
0

`

uL~r!u4/3 S g2

2 L2

d g

d r
1

g2

4

d

d r S g

L2D Ddr. ~82!

We now choose a simple form forg(r). Letting R be a
characteristic vortex radius we setg(r)51 for R/2,r,R,
and zero otherwise. Note that the cutoffs ing(r) do not
create a spurious contribution at high wave number to
form of the cross spectrum as we only useg(r) to evaluate
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coefficients for the axial velocity contribution. ThenA0 and
B0 may be evaluated, taking care to deal with the derivati
at the cutoffs ing(r),

A05S G

p D 2/3

log 2, B05
3p2/3

8

R2

G2/3. ~83!

We next approximate the strain rate usinga5(e/(15n))1/2

and choosef 05G/R2, u05G/R. Then we can write

Fu
18c

(a)
~k!

m e21/4n7/4

52
1

36
log 2 p1/31521/6~kh!25/3

3exp~22.58~kh!2! S N R2

a D S G

n D 8/3S a R2

4n D 22

2
1

48
p5/31521/3~kh!27/3

3exp~27.75~kh!2! S N R2

a D S G

n D 7/3 S a R2

4n D 22

, ~84!

whereh is the Kolmogorov length scale. It is interesting
find the ratio of the two terms in the above expression,

~kh!22/3
3p4/3

4 log 2
1521/6 S G

n D 21/3

exp~25.17~kh!2!. ~85!

Thus the second term becomes less important as the vo
Reynold’s number increases.

To compare this with the experiment of Mydlarski an
Warhaft5 it is necessary to estimateN R2/a, G/n and
a R2/(4n). We assume a value ofG/n51000 and letR be
given by the Taylor length scale. All other parameters exc
N are taken from the table of parameters in Mydlarksi a
Warhaft’s paper5 for a Taylor Reynolds number of 582.

To estimateN we find an expression involvingN for the
energy dissipation from the model and compare it with
experimental value. The energy dissipation for the mode
given by

e53na212nE
0

`

k2 ~E0~k!1Es~k!1Evu
!dk. ~86!

The first term is the dissipation from the strain field. T
remaining three terms are the dissipation associated with
vortex core,~axial! vortex spiral and axial velocity, respec
tively. This is Eq.~37! in Pullin and Saffman,7 except that we
now also include the leading order dissipation from the ax
velocity. An expression forEvu

is given by Eq.~66! of PL.
Expressions forEs andE0 are given in Pullin and Saffman,7

and were evaluated for the current choice of initial con
tions. The core dissipation was found to be

2nE
0

`

k2 E0 dk5
G2 N

8 p E
t1

t2 11at

t
dt. ~87!

To obtain a finite value we must choose reasonable t
cutoffs t1 and t2 , and, following Pullinet al.10 we choose
at151 andt25(G/n)22/310R2/(4n).
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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In order to make comparisons with the data of Mydlar
and Warhaft5 it is necessary to convert our shell-summ
cross spectrum to a one-dimensional cospectrum. The ap
priate relationship is derived in Appendix A,

Cu
18c

1d
~k38!5

3

4 Ek38

` k21k38
2

k3 Fu
18c~k! dk. ~88!

We note the factor of 2 in the relationship between the o
dimensional cross spectrum and cospectrum.

It is interesting to observe that if the one-dimension
cospectrum had been measured in the same direction a
velocity component used (u18) @i.e., if Cu

18c
1d

(k18) had been

measured#, then the axial velocity would give no contribu
tion because the axial velocity does not generate small s
scalar structure in the axial direction. The normalized o
dimensional cospectrum contributed by the axial veloc
obtained from Eqs.~84! and ~88!, is shown in Fig. 1 where
the k25/3 and thek27/3 terms are also shown separately f
comparison. In Fig. 2 this contribution to the cospectrum
compared with the experimental result of Mydlarski a
Warhaft. Note that the exact magnitude of this contribution
dependent on several rough estimates made above, fo
ample the value chosen fort2 . In Fig. 3 the same compari
son is made, except now the experimental data has b
smoothed using a one-third octave filter. The same comp
son is again shown in Fig. 4 in compensated form, where
spectra have been multiplied by (k38h)2.

B. Contribution of the planar velocity

Equation~65! for the contribution to the cross spectru
of the velocity in the plane of the vortex cannot in general
evaluated analytically or asymptotically. It was inste
evaluated numerically for different choices of the initial co
dition for the vortex core. A combination of the monte-car
integration routine ‘‘Vegas’’11 and the double exponentia
routine of Ooura12 was used. The double exponential routi

FIG. 1. The 1D cospectrum contributed by the axial velocity. Dashed,25/3
component. Dotted,27/3 component. Solid, both components.
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was used to speed convergence of the oscillatoryI c integral
for large r. This method of numerical integration was fir
used to evaluate the energy spectrum and reasonable a
ment with Lundgren’s asymptotic result6 was found. In the
case of an initial condition for the vortex core of a line vo
tex ~77! the situation is simplified because theI 0

v integral can
be performed explicitly. The resulting contribution to th
one-dimensional cospectrum for this initial condition
shown on a log-log scale in Fig. 5 compared with the ax
contribution.

Note that the planar contribution is not of one sign, u
like the experimental result. This is typical of results o
tained for other choices of the initial condition for the vorte
core. Also the upper cutoff in time has an effect on th
contribution, and if a cutoff is not used the core winds

FIG. 2. The 1D cospectrum contributed by the axial velocity compared w
experiment. Dashed, Mylardski and Warhaft data~Ref. 5!. Solid, axial con-
tribution from model.

FIG. 3. The 1D cospectrum contributed by the axial velocity compared w
the 1/3 octave filtered experimental data. Dashed, axial contribution f
model. Solid, 1/3 octave filtered Mydlarski and Warhaft data~Ref. 5!.
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more and more of the gradient so that the integrals do
converge. The planar contribution for this initial conditio
has two distinct ranges. The first range~for low wave num-
ber! is a k21 range and is of one sign. At higher wave num
ber there is an oscillatory spectrum with ak25/3 envelope.
However, both of these ranges are specific to this choic
V because the integral inI 0

v is not in general dominated by
point of stationary phase, and its form varies for differe
V’s.

V. CONCLUSION

The stretched vortex model has been used to calcu
the velocity-scalar cross spectrum for isotropic turbulence
the presence of an imposed mean scalar gradient.

FIG. 4. The 1D cospectrum contributed by the axial velocity compared w
experiment in compensated form. Solid, axial contribution from mod
Dashed, Mydlarski and Warhaft data~Ref. 5!.

FIG. 5. Comparison of the 1D cospectrum contributed by the axial velo
and the planar velocity. Solid, planar contribution. Dashed, axial contr
tion.
Downloaded 21 Nov 2003 to 131.215.119.76. Redistribution subject to A
ot

of

t

te
n
he

quadrature spectrum was found to be zero in agreement
experiment. Asymptotic expressions were found for t
cospectrum contributed by the axial velocity of the vorte
with the leading order term showing ak25/3 range. The next
order term had ak27/3 range, but its coefficient could be o
either sign or zero. It is interesting that Mydlarski an
Warhaft5 find a spectral exponent close to22, which lies in
between those of the leading-order terms contributed by
axial velocity in the present model. The contribution to t
cospectrum from the velocity in the plane of the vortex w
also calculated, but some integrals had to be evaluated
merically, and a specific vortex core had to be chosen.
resulting contribution did not remain of one sign, and w
comparable in magnitude to the axial contribution. The fo
of the contribution from the planar velocity depended on
choice of vortex core and time cutoff, and so a more phys
contribution to the cospectrum might result from an e
semble of different vortex cores and lifetimes.
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APPENDIX A: PROPERTIES OF THE
VELOCITY-SCALAR CROSS SPECTRUM FOR
ISOTROPIC TURBULENCE WITH A MEAN
SCALAR GRADIENT

The velocity field is assumed to be statistically isotrop
and homogeneous. The scalar field is statistically homo
neous with a mean scalar gradient given by the vectorm i .
We defineFi(k) to be the Fourier transform ofRuic

(r ),

Fi~k!5
1

~2p!3 E Ruic
~r !e2 i k"r dr . ~A1!

ThenFi is a first order tensor that is axisymmetric aboutm i ,
and so must have the following form:

Fi~k!5A ki1B m i , ~A2!

whereA and B are functions ofkim i , k and m. Using the
incompressibility of the velocity field we have that

ki Fi5A k21B m i ki50. ~A3!

Using this relation, and definingD52A k2/(m j kj ), we find
that

Fi~k!5D~k,m,kjm j ! S m i2
kjm j

k2 ki D . ~A4!

We will now use the fact that the equation governing t
scalar, Eq.~8!, is linear. If the spectrum is measured after
sufficiently long time, the effect of initial fluctuations abou
the mean gradient will have decayed to zero, and the sc
must have a linear dependence on the vectorm i . Also Fi(k)
depends linearly on the scalar, and so must also depend
early onm i . ThereforeD5D(k) is a function ofk, and has
no dependence onkim i or m. A similar analysis to the above
is given in Herr, Wang and Collins.9
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IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



W

rm

um

e
r

th
b
b

l

-
pe

of
ed

der

er

on-

th

and

er

290 Phys. Fluids, Vol. 15, No. 2, February 2003 P. A. O’Gorman and D. I. Pullin
We will now use this simplified form forFi(k) to relate
the shell-summed and one-dimensional cross spectra.
specialize to the case wherem15m and m25m350, and
consider the one-dimensional cross spectrum in thek3 direc-
tion. Then it is easy to show that

Fuic
1d ~k3!5E

2`

` E
2`

`

Fi~k! dk1 dk2 . ~A5!

Changing to polar coordinatesk15k cosu and k25k sinu,
and performing theu integral givesFu2c

1d (k3)5Fu3c
1d (k3)50.

Making a further change of integration variables fromk to k
gives

Fuic
1d ~k3!5m p E

k3

`

D~k! S k1
k3

2

k D dk. ~A6!

We can also find the shell-summed cross spectrum in te
of D(k) as follows:

Fuic
~k!5E

S
Fi~k! dVk . ~A7!

Using spherical polar coordinates we find thatFu2c(k)
5Fu3c(k)50, and

Fu1c~k!5
8p

3
k2 D~k! m. ~A8!

Then comparing Eqs.~A6! and ~A8! we have that

Fu1c
1d ~k3!5

3

8 Ek3

` k21k3
2

k3 Fu1c~k! dk. ~A9!

Finally we can easily show that the quadrature spectr
Qu1c

1d (k3), must be zero. Noting thatFi(k) is the Fourier

transform of a real function givesFi(2k)5Fi* (k). Also Eq.
~A4! implies thatFi(2k)5Fi(k), and soD(k) is real, and
the quadrature spectrum must be zero.

APPENDIX B: CONTRIBUTION TO THE SCALAR
SPECTRUM FROM c 3

In their calculation of the scalar spectrum PL assum
that the scalar had nox3 dependence. We will now conside
the effect of anx3 dependence in the particular case when
scalar initial condition is given by a gradient in the la
frame. An expression for the scalar spectrum is given
replacingEji uj (x,t) with c(x,t) in Eq. ~39!,

Ec~k!5
Nc

~2p!3 K K E
S
E

V
E

0

tcE
V
c~x,t ! c~x1r ,t !

3e2 i k"r dx dt dr dVk L
VO

L
IC

. ~B1!

We decomposec(x,t) using Eq.~18!, and assume the initia
conditions~19!. We setc8(x,0)50, because our solution~22!
for c3 is only valid for a gradient initial condition. This ap
proximation was not necessary in the case of the cross s
trum, where we were able to eliminate thec8 contribution by
Downloaded 21 Nov 2003 to 131.215.119.76. Redistribution subject to A
e

s

,

d

e

y

c-

making an assumption about the statistical distribution
initial conditions. The orientation average may be perform
immediately using the integrals~41! to give

Ec~k!5
Nc

3 ~2p!3 K E
S
E

V
E

0

tcE
V

(
j 51

3

cj~x,t ! cj~x1r ,t !

3e2 i k"r dx dt dr dVk L
IC

. ~B2!

The terms in the integrand involvingc1 and c2 have nox3

dependence and so were dealt with in PL. We will consi
Ec3

, the contribution fromc3 . We assumen5D and use
solution ~22! for c3 . Then we have that

c3~x,t ! c3~x1r ,t !5m2 exp~22 at! ~x3 r 31x3
2!2m2 a21

3exp~2at! sinh~at! ~x3 u3~x1r ,t !

1x3 u3~x,t !1r 3 u3~x,t !!1m2 a22

3sinh2~at! u3~x,t ! u3~x1r ,t !. ~B3!

We will now show that the first term in Eq.~22! does not
contribute to the scalar spectrum. Noting thatu3(x) has no
x3 dependence, terms in Eq.~B3! that are linear inx3 will be
eliminated upon integration overx3 . Also terms that are lin-
ear inu3 will be eliminated by performing the average ov
initial conditions. The term involvingx3

2 will not contribute
to the high wave number spectrum. Therefore the only c
tribution comes from the second term of Eq.~22!. We again
simplify by replacing the average over initial conditions wi
one particular initial condition.

Changing to Fourier space using Eq.~43!, and after
some algebra, we find

Ec3
~k!5

N~2p!2

3 E
0

tcE
0

2p

m2 a22

3sinh2~at! û3 û3* k duk S~ t ! dt. ~B4!

This is very similar to expression~46! for the axial contribu-
tion to the cross spectrum, except for a factor in the integr
of 2m/a sinh(at). Following a similar analysis to Secs. III C
and III D, and keeping terms in the integrand ofO(t21), we
find

Ec3
~k!5

2pm2N

9
k21 a23 expS 2

2 n k2

3 a D
3 (

n51

` E
0

`

r uÛn
(0)~r!u2 dr

1
4pm2N

9
k25/3a28/3expS 2

n k2

3 a D
3 (

n51

`

n2/3E
0

`

uL~r!u2/3Re~Ûn
(0)~r!Pn* ! dr. ~B5!

Thus the new contribution toEc is a combination ofk21

and k25/3 power laws in a certain range. The wave numb
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



th

in

a-

ro-

ds

e,’’

of

onal
hys.

lar

a

,

ry

291Phys. Fluids, Vol. 15, No. 2, February 2003 The velocity-scalar cross spectrum of stretched spiral vortices
dependence is the same as was found in PL, Eqs.~81!–~85!,
for scalar initial conditions with nox3 dependence, and
so the new contribution does not alter the nature of
spectrum.
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