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The velocity-scalar cross spectrum of stretched spiral vortices
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The stretched-spiral vortex model is used to calculate the velocity-scalar cross spectrum for
homogeneous, isotropic turbulence in the presence of a mean scalar gradient. The only nonzero
component of the cospectrum is that contributed by the velocity component in the direction of the
imposed scalar gradient while the quadrature spectrum is identically zero, in agreement with
experiment. For the velocity field provided by the stretched-spiral vortex, the velocity-scalar
spectrum can be divided into two additive components contributed by the velocity components
along the vortex axis, and in the plane normal to this axis, respectively. For the axial velocity field,

a new exact solution of the scalar convection-diffusion equation is found exhibiting scalar variation
in the direction of the vortex tube axis. An asymptotic expression was found for the cospectrum
contributed by this solution and the axial velocity, with the leading order term showkg’a

range. This term is produced by the winding of the initial axial velocity field by the axisymmetric
vortex core. The next order term giveka’” range, and arises from the lowest order effect of the
nonaxisymmetric vorticity on the evolution of the axial velocity. Its coefficient can be of either sign
or zero depending on the initial conditions. The contribution to the cospectrum from the velocity in
the plane of the vortex is also calculated, but no universal high wave number asymptotic form is
found. The integrals are evaluated numerically and it is found that the resulting cospectrum does not
remain of one sign. Its form depends on the choice of the vortex core velocity profile and time cutoff
in the spectral integrals. The one-dimensional cospectrum contributed by the axial velocity is
compared with the experimental data of Mydlarski and WarhaftFluid Mech.358 135-175
(1998]. © 2003 American Institute of Physic§DOI: 10.1063/1.1527916

I. INTRODUCTION If we define the velocity-scalar correlation by

The problem of turbulent scalar mixing shares many of T e oY
the features of the classical turbulence problem, and has im- R“iC(r)_u'(X)C(XH)’ @
portant applications in areas such as turbulent combustiofhen the one-dimensional velocity-scalar cross spectrum is
and dispersion in both geophysical and environmental flowsgiven by
It is of interest to apply methods that have been shown to
provide quantitative results for the energy spectrum to the
problems of scalar spectra and cross spectra in turbulent
flows, one example being the recent use of the stretched
spiral-vortex model to calculate the scalar specfrfion ho-  In general the cross spectrum may be complex and can be
mogeneous but nonisotropic turbulence. As is noted belowsPlit into real and imaginary parts as
the real part of the velocity-scalar cross spectrum gives the 1d _ ~1d . 1d
distributign of the scalar flux across scalesf)and thus is inter- 2 F”ic(k3)_ C”ic(k3) ! Q“ic(k3)’ ©
esting for problems in turbulent heat transfer. Also, because fhere Ctljd

, " d(ks) is the cospectrum and.%(ks) is the
mean scalar flux can only occur as a result of anisotropy, it is o(ks) P Ry c(ka)

interesting to know how quickly the cross spectrum decay@ﬁgg;ag;feer?:ccgsuTgtwegﬁaglr:u;fufﬁ?cgsnr? fn:a(ar:t&l;egf t(t)he
with increasing wave number. If, as is thought, the crosd b

spectrum decays faster than the scalar or energy spectra, thd plar anq the velocity fields. In Appendix A t.he qugdrature
this is a measure of the approach to isotropy at the small §pectrum Is shown to be zero-for the case of isotropic turbu-
scales. In addition, because the total scalar flux represeri%nce and a mean scalar gradient. The integral of the cospec-

. . P : rum over all wave numbers i | to th lar flux
transport in the scalar advection-diffusion equation, knowl-TUmM over all wave nu bers is equal to the scalar flux,

Fld (k ):ijw Ry (0,0r3)e~ks'adr 2)
uc 3 2 e u;c\ ™ 3 3-

edge of the cross-spectral properties of vortex-models is ex- (=

pected to be useful in their application to the building of UiCZJ Cﬁ?c(ks)dks- (4)
subgrid scalar-flux and mixing models for use in large-eddy 0

simulation? While considering the effect of buoyancy on the energy

spectrum, Lumleused a similarity hypothesis to predict the
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force is set to zero, then the absolute and potential temperacalar gradient. In Sec. IV the expressions for the cross spec-
tures are the same, and Lumley’s EtpR) for the cospectrum trum are evaluated for a particular choice of initial condi-

simplifies to tions. The contribution from the axial velocity is evaluated
using its asymptotic form for high wave number, but the
Cuye(k)~ wekB, (5)  contribution from the velocity in the plane of the vortex can

only be evaluated numerically.

where € is the mean energy dissipation apdis the mean
scalar (temperaturg gradient in the “1"-direction. We are
assumi_ng the flow is such that temperatu_re i.s appr_oximatgln_ EVOLUTION OF THE SCALAR AND THE VELOCITY
a passive scalar, and the turbulent velocity field is isotropicy A STRETCHED VORTEX TUBE
Note that Eq.(5) follows from dimensional analysis if the
cospectrum depends only ¢n e and u. We wish to find the evolution of the velocity and scalar

Mydlarski and Warhaftstudied the velocity-temperature fields in a vortex tube embedded in a background linear ve-
cross spectrum in a wind tunnel for Taylor Reynolds nume-locity field. For convenience let, now be vortex fixed axes
bers as high as 582. Fluctuations in the passive temperatuveherex; is aligned with the vortex tube axis, and bt be
field were generated by imposing a linear mean temperaturthe laboratory coordinates. The velocity field of the vortex
gradient across the tunnel. The resulting cross spectrum wasbe is assumed independent of the axial coordirgtebut
noisier than the energy or scalar spectra, and this was exaay have a component in the direction of the vortex axis.
plained by noting that no mathematical limitation keeps theThe scalar is a function of all three spatial coordinates. The
spectrum either positive or negative. Nonetheless their refollowing analysis generalizes that of Pullin and Lundgten,
sults indicate that the quadrature spectrum is close to zerdereafter referred to as PL, by letting the scalar havezan
while the cospectrum exhibitedla ? range at largeR, . dependence. The effect of this change on the scalar spectrum

The stretched spiral-vortex model of turbulence, intro-is discussed in Appendix B.
duced by Lundgrefi,uses an ensemble of vortex tubes to  The Navier—Stokes equations for the veloaityand the
model the fine scales of turbulence. The vortex tubes do notorticity w; are

interact except in that they are stretched on average by the 5 P
Uj

surrounding flow. The vortex tubes are assumed to be @ vi— = L2, (6)
straight, with no dependence of the velocity field on the co-  dt L ox; X v

ordinate parallel to the tube axis. In each tube the vorticity is

evolved by the Navier—Stokes equations and the scalar is @+v,@:w_@+vvzw, @)
evolved by the convection-diffusion equation. The axial vor- Jt b ox Lox; a

ticity, the axial velocity and the scalar are each wound up . e .

) . : . : and the convection-diffusion equation for the scalar

into spirals by the differential rotation of the cores of the C(X1 Xp ,Xa 1) IS

vortices. Average flow statistics are calculated by performing™ 1’7273

an average over time and space. This model gives good re- ¢ Jc

sults for energy and scalar specttandividually. By also ot TVig ~ P Ve, (8)

performing an average over vortex orientation the model was )

used to calculate vorticity and velocity-derivative moments, whereP is the pressure-density ratio,is the viscosity and

as well as one dimensional speditra. D is the scalar diffusivity. The velocity field is decomposed
There have been few attempts to calculate the velocityas

scalar cross spectrum; see for example the EDQNM calcula-

tions of Herr, Wang and CollinIn this paper we propose to Vi =Ui(Xg, Xz, 1) +ai(1)X; ©

calculate the cross spectrulm using the stretqhed spiral-vortexiih a;+a,+a;=0 anda;>a,>a,. Summation over is

model. To model the experiment of Mydlarski and Warhaft, anot implied. If the support of the vorticity is compact in a

mean scalar gradient is imposed and an isotropic turbulerf,main surrounding; =x,=0 then the velocity can be ex-
velocity field is assumed, with the vortex tubes oriented Withpressed in terms of a vector potentia(x,,x,,t) as

equal probability in all directions. In Sec. Il asymptotic ex-

pressions for the evolution of the velocity and scalar fields in AP A3 Ay Iy

the vortex tube are described. A new feature of the present Y17 g, U2= 7 5 UsT gm0 (10
analysis is that the scalar can now show variation parallel to

the vortex axis, and so its evolution is influenced by the axiaNow choose the gauge @ so thatdy; /dx;=0. Then

velocity. This is important because the scalar and the axial 2 2
velocity evolve in a similar way, unlike the scalar and a  ;(x;,%,,t)=—V3);, Vi=—75+—. (11
given planar component of the velocity, leading to an impor- Xy 9%y

tant contribution to the velocity-scalar correlation. In Sec. lll We
expressions are derived for the cross spectrum contributed by
the axial velocity and also the velocity in the plane of the  px(y, x, t)=P+ 1(a2x?+ad3+a23d). (12)
vortex. It is found that the only nonzero cross spectrum is

that of the scalar and the velocity in the direction of theThen we have the following equations feg, u; andc:

also define a reduced press@& as follows:
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(?(1)3 (71,03 1“7(03 1“71,03 (7603
—Flagxt | ——+|ax,— —| —+a
it VT 0%, ) axg 0P x| ax, | 03¢s
=VV§(U3, (13
(7U3+ (9!,03 dus (hpg (9U3+
- a X - axXo— —— | ——— tasu
ot 0 0%, | ax 272 9%y ) ax, 373
:vau:;, (14)
ac dys\ dc d3\ dc
—+|aX+ —+laXe— —— | =
at LT 0%, | ax 272 9%, | 9%y
Jc 2
= —(agxztuz) — +DV-c. (15
X3

It can be seen that Eq&l3) and(11) (i =3) are sufficient to
determine w3(X1,X,,t) and ¢3(x4,X,,t). Once these are
solved Eq.(14) can be solved fous(x;,X5,t), and finally

Eq. (15) can be solved foc(x;,X5,X3,t).

P. A. O'Gorman and D. I. Pullin

1
X3(0)=X5(t) € % 1= us(x1,xz,t) sinh(at), (21)
so that
1
Ca(X,t)=pu e‘atx3—u3(x1,x2,t)asml"(at) . (22

It is easily verified by direct substitution that this solu-
tion (22) for c; is also valid in the case when#0 if Sc
=yp/D=1. The Schmidt number was 0.71 in the experiments
of Mydlarski and Warhaft. To simplify the analysis, we sub-
sequently assume Sd.

B. Solutions for
vorticity

c,, €, and the axial velocity and

Both ¢, andc, have nox; dependence initially, and so
from Eq.(15) it is clear that they will be independent »f at
later times. We are thus motivated to study solutions to Eq.

We wish to consider the case where there is a meahl® When there is nx; dependence,

gradient,u, in the scalar in the lab frame. We will assume the

mean gradient is along theg axis, wherex; are lab coordi-

nates. The scalar field at time zero may then be decomposed

Jdc

o, I3

Jc
Xoe 3| = =
2X27 g,

— 2
%, DV-c.

dPs\ dc
a| X+ (?_Xz> B_Xl + ( a
(23

as the sum of the linear gradient fixed in the lab frame, and a

fluctuationc’ (x,0)=c’ (X4 ,X5,%3,0),
(16)
17

where Ejj(a,B,7) is a rotation matrix describing a rotation
from the x{ axes to thex; axes, such thaxj =E;;x;, and

where (a,,y) are the corresponding Euler angfebloting

c(t=0)=pux;+c’(x,0)

= w(EqX1 + ExXo+ EgiXg) +¢'(x,0),

that the equation governing the scalar is linear, we decom-

pose the scalar field at tinteas

C(X,t) = E11C1(X,t) + E2102(X,t) + E31C3(X,t) + C,(X,t),
(18)

where
Ci(X%,0)=pu Xj, (19

and each ofc,,c,,c5,c" solve Eg.(15). We now further

It is convenient to work in polar coordinates, ) with x;
=r cos#, x,=r sind, and introduce the transformatfon

S(t)=e*!,

p=S(t)r,
1
= (S()-1),

Ya(r,0,0)="p(p,0,7), (24)
w3(r,6,t)=3(t) w3(p,0,7),

us(r,0,t)=S(t) " *Us(p,6,7),

c(r,0,t)=C(p,0,7).

Equations(14) and(23) can then be expressed in essentially
the same form

specialize to the case of a time independent axisymmetric

strain field, a;=a,=—al/2,a3=a, a>0, and also set the
Schmidt number equal to unity, Sa/D=1.

A. Solution for ¢ in terms of u4

We begin by defining the material derivatiie/Dt
=gl dt+v; 9/ 9x; and temporarily set=D=0. Then we can
rewrite Eq.(15) for c; asDc;/Dt=0, and it is clear that,
is conserved along pathX;(t) that satisfydX;/dt=v;.
Therefore, using the initial conditioi19) we have that
c3(x,t) = u X3(0) whereX;(t) =x;. We can also rewrite Eq.
(14) as Dus/Dt=—au;, so that ug,(x,t)zexp(—at)ug,0
whereus is a constant, and

dXs(t)

T:aX3(t)+e_atU3o.

(20

This equation can be solved to give

at p\ ado dp

9¢ L[ ds ad iy a¢): 5

where(¢,x) are either U5, v) or (C,D). Approximate solu-
tions for @3, ¥3, Uz andC can be found using a two time
analysis' These solutions are asymptotically correct for large
7. The solution for the axial vorticity and the stream function
takes the form

oo

5')3:2 on(p,7)expin ), o_,=o;, (26)
W= dn(p.r)expind), Yo=di, (27)

where the Fourier coefficients, for# 0, are

wn(p,7)=Fn(p)exp(—in Q(p) 7—vn?A2733), (28
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Ui, 1) =7"2h.(p) exp—in Q(p) 7— v n2 A2 733), . THE CROSS SPECTRUM
29
. 9 We will first consider the shell-summed cross spectrum
with defined by
fn(p) dQ(p)
hn(p)= T2 A(p)= dp (30

l Sl et
Fu_rc(k)zﬁf f Ryc(r'e™ Khr' gr’ dQ,,, (35
The 6 averaged angular velocif(p) is related to the zeroth ' (2m)* Js)v
harmonic of the vorticity and tgy, by

1 9(p?Q) 1 9y, where as before prime_d quantities ind?ca’Fe the lab frame, and
wo(p)=— , Qp)=———. (31)  of coursek=k’. The integral overV indicates a volume
pp p ap integral that may be taken as over all space. The integral over

It should be noted that we assume<0 in order for the S indicates a surface integral over a spherical shell in wave-
expansion in large to be valid. The expressions far, are  number space. The shell-summed cross spectrum is real, as
valid to O(1) for n#0. Howeverw, (and hence) is con- may be seen by making the change of integration variables
stant in time to within terms of order 2. The functions k'’ to —k’, and it integrates to the scalar flux,

f,(p) may be viewed as initial conditions that define a spiral

vortex structure although the solution is of course only valid -

for large 7. The above solution for the axial vorticity essen- ui’c=f Fuoe(k)dk. (36

tially describes the winding of the nonaxisymmetric part of o

the vorticity field by the axisymmetric patthe corg. The

solution for the stream function may be rewritten in the form  We suppose there is a box populated by a collection of
~ _~0). —272) stretched vortex tubes. The vortex tubes do not interact ex-
=t T S, cept in that each vortex tube is stretched on average by the

o other vortex tubes. We assume that the vortex structures are
= > YPexpin(6-Qr)), (32)  distributed sparsely enough so that the overlapping velocity

—=.n#0 and scalar fields from the vortex tubes do not contribute
~ (2 strongly to the fine scales. It is further assumed that a statis-
I =hn(p) exp(— v AZ 7°/3). tical equilibrium has been reached whereby the structures are
The asymptotic solutions for the scalar and the axial velocitycreated and decay at the same rate. The average in the defi-

are then given byto orderr 1) nition of the scalar-velocity correlatiofl) is then interpreted
" as an average over time, space, vortex orientation, and initial
Cip,0,0=CO+7 1 3  cWexgin(6-0 1), conditions of one vortex tube,
—o,n#0
oo tC
, ’ — Cc " ! ! ! !

cO=> cO%p,7) expin(6—Q 7)), Rye(r’)=N < < fo Jvu,(x e+ Hax dt>vo> ’

- IC

(33 (37

CO=CP(p)exp(—D n? A2 7[3),

e (0) 7@ whereNC is the rate of creation of vortex tubes per unit time

C(l):'_ > m@(z)&—(n—m) ZM (0 and per unit volumet® is a typical vortex lifetime(),c in-
n . m a a n—mj? . .. . . .
P —<,m#0 p dicates an average over initial conditions, &g, indicates
o an average over vortex orientation. The average over vortex
Us(p,0,7)=U©@+ 71 E Ugl) exp(in(6—Q 7)), orientation is defined using the Euler angteg,y that rotate
—n#0 the lab frame to the vortex fixed franfle,
UO=3 UP(p,7) expin(6-Q 7)), 1 (27 (27 (=
= (Evomgez | || BN Pl
(34) w 0 0 0
(0)_(0) _ 2423
Un =Un"(p)exp(=vn= A= 7/3), xsina da dgdy, (39)
R au a2
1) _ ~(2 n—m m 0
U )_;_mzmio my Jp —(n—m) Jp U/, where P(a,8,7) is the probability density function of the

Euler angles. To match with experiment we specialize to the
where the initial scalar field is given by the functic{$(p)  case of an isotropic velocity field and set=1 so that all
and the initial axial velocity field is given by the functions orientations are equally likely. We now rewrite E®5) by
0510)(p). It should be emphasized that this scalar solution ischanging the ordering of the averages, substituting
only valid when the initial conditions have no; depen-  =E;u; and changing integration variables framto r, from
dence, as is the case for andc,. k' to k, and fromx’ to x,
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Fuirc(k)=%< < UV ECLEN uj(x,t) C(x+1,t)

xe kT dxdtdr ko> > (39

A. Simplification using symmetries in the distribution
of initial conditions

P. A. O'Gorman and D. I. Pullin

and per unit volume, and the fact&(t) arises from the
lengthening over time of the vortex tube. Defining the two
dimensional Fourier transform of a functidx,,x,) by

'fk Kk :i ” ” —ikqxq—ikoXp
(kq,k2) a2 |, _we

Xf(Xl,Xz) Xm dXz, (43)

and dividing the expressiof#2) into contributions from the

Next we use some symmetries in the distribution of theaxial velocity (a) and planar velocityp), we find that

initial conditions of the velocity and the scalar to simplify
Eq.(39). For a given vortex tube let the initiak distribution
be uzq (say at the time when the tube is createdle will
consider the effects of the transformatian, to —ug,.
Clearly uz(x,t) changes to—us(x,t) because Eq(14) is
linear and homogeneous. It is also clear thatandu, are
unaffected as they have g dependence. From E(L9) we
see that initiallydc, /dx3=dc,/dx3=0. Then by taking the
partial derivative with respect t; of Eq. (15 we see that
dcq/dxz=dc,/dx3=0 for all times. It is then clear from Eq.
(15 thatus has no influence on the evolution of or c,.
Finally, it is clear that the first term in expressi(2p) for c;

is unaffected by changes g, and that the second term
will change sign whemz, changes sign.

Therefore, if we assume that for each initial distribution

of velocities u;(x,0) and u,(x,0) that usz(x,0)=usq is as
likely as uz(x,0)=—usq, then performing the average over

Fuie(K) =F(k)+F oK), (44)
where
® N@2m)? ftofem
Fu,c(k)=—Jf (0, TF +0,T5)k d, S(t) dt,
1 3 0 Jo
(45)
N(2m)? [t (2= 1
@ oy L -
Fuic(k)— 3 fo fo (,uasmr(at)u3u3
X k d@ S(t) dt, (46)

andk;=k cos6, andk,=k sin §.
B. Contribution from the planar velocity: Ff}”fc

We now consider the contribution to the cross-spectrum

neglect. At this stage we also neglect the fluctuation tefm
in the expressior{18) for c(x,t). This may be justified by
noting thatc’ (x,t) depends linearly on’(x,0), and making
the approximation that’(x,0) andu;(x,0) are statistically
independent. We therefore replagg u;(x,t) c(x+r,t) in
expression(39) with

[Ejjus+Equa](x,t) [Ejnci+Ep €

+Eg e ' xg](x+r,t)

1
—Egjus(X,t) |Eq u u3§sinl"(at) (X+r,1). (40

For simplicity we now replace the average over initial

conditions with one particular initial condition. Using the
integrals

1
Sikdj1

1 :
Wf E'] EleIna da dIBd’y:§ (41)

to perform the orientation average gi\/égéf Fuéczo and

F”i°(k): %gjsfvjotcfv

1
X Co(X+1,t) —us(X,t) u asinr(at) Ug(X+r,t) }

Uq(X,t) co(X+r,t)+us(x,t)

xe KT dx dt dr dQ. (42)

Noting thatu,,u,,us,cq,C, have nox; dependence we can
replace chgcfvdx dt with N fgcf‘fx,ffm dx, dx, S(t) dt

whereN is the rate of creation of vortex length per unit time

in Eq. (45). We can simplify the analysis by relatifigto @.
Using ;= €jj du/dx;, assuming that the velocity field de-
cays sufficiently quickly ax; or x, become large, and de-
fining k3=0 gives@,=1 €, Km0, . The assumption of in-
compressibility givek, U;=0. Thereforel);, is orthogonal to
k, and®,, and

0= & €ymp Kin 0n= — i K20, . (47)

Thus the scalar « is determined and 0,(k;,k>)
=ik 2 emnkm &,. We are interested in the components of

the velocity in the plane,
i i R
K —C0S6) 3.

Oy(ky,kp)= K
(48)

sinfy w3, Uy(ky,Kp)=—

Then from Eq.(45) we have that

®) 1 te (27
FP(k)==iN (277)2f f @3(sin 6, T —cosh, th)
U1C 3 0 0

X d6, S(t) dt. (49
Letting
w3:n_§_m wy(r,t)yexpin 6), (50
and using
f:wexm n 0—ikr cog 0 6,)) do
=(—i)"27d,(kr)exp(in 6y), (51)
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gives
1 ®
&)3=En§_ (—i)"exp(in ) 19(k,t), (52)
where
Iﬁ(k,t)=rc wn(r,t) Jp(kr)rdr. (53
0

We will use the solutior{33) for ¢, andc,, but will neglect
terms of orderr—1. Using the initial conditiong19) we see
that forc,

A mp o4 mp

C(lo)_T’ C(_%=7, (54
and that forc,

- fpp o Tmp

EO=— 5 @iz_z (59

Note that because the solutions for the scalar and the vortic-
ity are only valid asymptotically in time, we should specify
the initial conditions at some initial timtg > 0. However, we

The velocity-scalar cross spectrum of stretched spiral vortices 285

Finally we can evaluatdg in terms of Q(r’,0) as
follows:

|g’=f Jo(k 1) wo(r,t)rdr
0

‘@o(p,7)p dp, (61)

(e
0 0 1+ar
where wqy(p,7) is the 6 average ofws(p,6,7). Note that
unlike the analysis in Sec. Il whef@ was taken as constant
in time in the asymptotic solution for the scalar and vorticity
spirals, we must now take into account the evolution in time
of Q(r’,t) andwy(r’,t). It is easy to show thab, evolves
according to a heat equation in a cylindrical geoméffis
can be solved using a Green'’s function in terms of the vor-
ticity distribution att=0,

Dolp 7 =27 J:aou',m

o 1
47TVTeX

2 12 2
(p4+: )>|0(2 ”r dr’. (62)

make the approximation,—0, and the resulting integrals Substituting this into Eq(61) and performing the integral

are convergent at time zero.
It is convenient to define

|°=%f: exp—i Q(p) 7—D A(p)2 7%/3)

XJi(kr)prdr
—ﬁj exp—i Q(p) —D A(p)2 7%3)
kp )
XJl( m) p-dp. (56)
Then usingd_;=—J; and Eq.(51) we have that
1
o 155 ((—i)expi ) 15+ (—i)~ !
xXexp(—i 6y) (—19%), (57)
=—((—I)eXp(l ) 1°(—i)+(—i)~*
xexp(—i 6) (—19%1i). (58

Substituting Eqs(57), (58), and (52) into (49), and after
some algebra we find

tC
F(p)(k)— f (—i)"exp(in 6,)
n_—oc
X2 ((19* =1°) d g, S(t) dt. (59
Therefore onlyn=0 makes a contribution and
FO o= 27N [“121mae) s at 60
we(=—3"N | 151m(1%) S(t) dt (60

gives
f‘](\ﬁrlk Do(r’,0) r'dr’
—— | wy(r’,0) r'dr’.
o \Vitar °

jo_ —v7k?
0= €X 1+ar
(63)

If we use Eq.(31) to relatewq to (2 and note thatvy andw,
coincide att=0, we find that

—v7k?
w_ -1/2
lo exr{ 1+a7)k(1+a7)

X J
jo ! Vv1l+ar

This expression folg cannot be evaluated using the method
of stationary phase unlike the corresponding integrals for
higher harmonics. Therefoféﬁe)c(k) does not have a univer-

1

Q(r',0) r'2dr’.

(64)

sal form at high wave number, and in fact depends on the
choice ofQ(r’,0). However, once again the contribution to
the cross spectrum has no imaginary part. Combining Eqgs.
(60), (56) and (64) gives

—1/7'k2
ka ex

XS(t) Ll( 'T,k) Lz(T,k) dt,

F(p)(k) 1 aT)*3/2

(65

where

Ll(T,k): - J;:o ‘Jl

K
ﬂ%m) sin(Q 7)

X exp(—D A2 73/3) p2dp, (66)
” r'k ’ r2 ’
LZ(T,k):JO ‘Jl \/ﬁ- Q(r ;0 r'=dr’. (67)
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This expression is evaluated for a particular choice of vorteX. The next order contribution from  F@
core in Sec. IV. e

Unlike the calculation of %) discussed in the next sec- Now consider the next order contribution by including

. 1 Lo terms involvingU(! . We keep only term® (7 %) and use
tion, here we only calculate the lowest order contribution to g% b onty ()

(p) . o ) stationary phase to evaluate théntegral to find
F.c- Thisis because of the complexity involved in proceed-
1

. . "1 (0 1 1 " (0
ing to higher order, and also because, as we have seen, the I |2:Pn (0O UB(p* +UB(p) UO(p)*)
asymptotic form ofFfff)C is dependent on the initial condi- n S2A"(py) k2N
1
tions. We will use this lowest order contribution in Sec. IV to vn?A?(p,) 7
show that the planar contribution is comparable in magnitude xXexp — - 3 (74)

to the axial contribution.
Again approximating sinkat) by 3 exp(t) for at>1, chang-
C. Contribution from the axial velocity: ~ F5. ing variables front to p,=p, using|U)|=|0{) and let-
! ting t,—o we find
We now wish to consider the contribution from correla-

tions between the axial velocity; and the second term of F@ (M= 8muN B e R axd — V_k2
c3. Using expressioig46) and defining U © 9 3a
us(r,6,t)= >, usn(r,t)expin6), (68) X 21 n*3 . |A(p)|**Re(0P(p)P}) dp,
n=—owx n=
we find that (75
9 Lo where
@ 1 — ¢ 2 i
Fuic(k)__ﬁkNZWJo n;m |10l sinf(at) S(t) dit, _— vk? (m?+(n—m)?)
(69) "l TR 3am
where fn(p) 0 -
. x|z 75 (O m(e))
In=f Jn(Kr) ugp(r,t)y rdr. (70
0 n_m'\(o) d [ fm(p)
. . . - 2 Un—m(p)[?_ A2 . (76)
This is similar in structure to the expression for the energy m p

spectrum contributed by the axial velocttote that this  again this contribution has no imaginary part and it is uni-
contribution is negative, consistent with the experimental r®formly of one sign, although it is not clear if this sign is
sults of Mydlarski and Warhaft. We can now use the positive or negative. Note that the coefficient for this contri-
asymptotic solution fous tg)evaluateln_. We first consider  ption is an integral involving the initial conditions for the
the contribution from theJ'®) term. Using Eq.(34), the in- axial velocity (0510)([))), the axial vorticity f(p)) and the

t(ig;al inr fgr In may be evaluated using the method of radial derivative of the theta averaged angular velocity (
stationary phase giving =dQ/dp). The following argument could be made to make

" (0) 2 272 3 this coefficient zero. The functiorfs(r) describe the initial
pnlUN (o) 2vn“A%(p,)T - . o ) )
NolP=p———exg —————|, (71 condition for the axial vorticity. We can write without loss of
S" A (pp) k7Tn 3

generality f,(r)=exp(n 6,+in &) [f,(r)| where thed, are
wherep,, is the point of stationary phase. If we approximate constant offset angles arithen fixes the orientation of the
S(t)=a 7 (valid for a 7>1) thenp, is related tor by nonaxisymmetric part of the initial axial vorticity. Then
Ffﬁ)c(k)(l) only depends ord throughP? . It is clear that if
1
(72 we assumeis distributed uniformly for a given set of func-
tions 0©(p) then F% (k)™ will be zero. That is, if the
. . . 1
We now approximate sinbf) by ;exp@i) (making an initial conditions for the axial vorticity and the axial velocity

_2 . . .
O(77*) errop and change integration variable frofmo p 5.0 ncorrelated then this first order correctiori:ﬁ.%)c will
=pn. Using|U©)|=|0O) and lettingt,— o we find L

2/3

k

na' 2|A(pn)|

T=

give no contribution. Indeed changing the sign of thes
and leaving everything else constant will change the sign of
this contribution.
Recall that earlier in the derivation we assumed that for
- © a given initial condition for the velocity in the plane of the
an’l n? 0 P |U510)(P)|2 [A(p)[*Pdp, (73 vortex, that either direction was as likely for the initial con-
dition of the axial velocity. In other words it was assumed
where we have neglected the zeroth harmonic. that the statistics of the initial velocity field do not possess

2 vk?
3a

477 uN

Ffﬁ)c(k)(o)= - k‘5’3a‘8’3ex;{ -
1
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chirality. This is consistent with the existence of a correlationcoefficients for the axial velocity contribution. Théy and
between the orientation of the initial conditions of the axialBy may be evaluated, taking care to deal with the derivatives
velocity and the axial vorticity. Indeed changing the sign ofat the cutoffs ing(p),

U©(p) has no effect oﬁﬁail(k)(l). 3,23 R2

2/3

In summary, we have found an expression for the axial AO:(;) log 2, BO:T 726 (83
contribution as a sum of two terms. The first term, expression ) ) ) 2
(73), has ak 5/ power law range. This is produced by the We next approxmgte the strain rate u5|agt(e/(_15v))
winding of the initial axial velocity field by the axisymmetric @nd chooséo=I"/R", up=T'/R. Then we can write
vortex core. The next order term, express{@d), has ak~ "3 F@ (k)
power law range, and arises from the lowest order effect of “1°
the nonaxisymmetric vorticity on the evolution of the axial w e AT
velocity. We will evaluate Eqq73) and(75) in Sec. IV for a

particular choice of initial conditions. =_ 3_6|Og 27315 Y8 (kqyp) 5
R2 r 8/3 a.R2 -2
_ 2 -
IV. COMPARISON WITH EXPERIMENT X exp(—2.58(kn)%) a v 4y
We n0\_/v.e_valuate _E_q$65), (73 .and.(7l5) forapartic_:ular —iw5’315*1’3(k )71
choice of initial conditions. For simplicity and consistency 48 Y
we will choose simple initial conditions similar to those con- 5 13 S
sidered for the scalar spectrum by PL. We will use a line X exp — 7.75(k7)2) R E) aR (84)
vortex as the initial condition for the vortex core so that ' K a 4y '

where 7 is the Kolmogorov length scale. It is interesting to

Q(p,0)= T 2 A(p,0)=— o (77 find the ratio of the two terms in the above expression,
~213 37 el L e 2
A. Contribution of the axial velocity (k)= log 51570 ) exp—=5.17(kn)%). (89

We first consider the contribution of the axial velocity. Thus the second term becomes less important as the vortex
The initial condition for the non-axisymmetric component of Reynold’s number increases.

the axial vorticity is chosen to be To compare this with the experiment of Mydlarski and
w3(r,60,00=2f,g(p) sin(26), (78) Waghaff’ it is necessary to estimat®l R?/a, I'/v and
_ _ . . aR“/(4v). We assume a value df/»=1000 and letR be
so thatf,=—ifog andf_,=ifog wheref, is a dimen-  given by the Taylor length scale. All other parameters except
axial velocity to be Warhaft's papetfor a Taylor Reynolds number of 582.
Us(r,8,00=2 uyg(p) cosé, (79 To es_timatd_\l we find an expression involviny fpr the
A ) energy dissipation from the model and compare it with the
so thatU{®¥=u,g and0®)=u,g. Then experimental value. The energy dissipation for the model is
: by
47 N 20 k? given
@ () — M 53 —8i3 2
Fuic(k)__Tk a exy{— 3a )Uvo

6=3va2+2vf k2(E0(k)+ES(k)+Ew9)dk. (86)
87 uN vk? 0

9

2
— 73 ! 2
k="a 739)('{ - ) fousBo,  The first term is the dissipation from the strain field. The

remaining three terms are the dissipation associated with the
@0 vortex core,(axial) vortex spiral and axial velocity, respec-
where tively. This is EQ.(37) in Pullin and Saffmar,except that we
now also include the leading order dissipation from the axial
A= fx p9(p)2|A(p)|?3dp, (81) velocity. An expression foEwe is given by Eq.(66) of PL.
0 Expressions foEg andE, are given in Pullin and Saffmah,
and were evaluated for the current choice of initial condi-
))dp. (82) tions. The core dissipation was found to be

> I'’N (= 1+ar

We now choose a simple form fa(p). Letting R be a ZVJ k?Eqdk= 2—
characteristic vortex radius we sgtp) =1 for RI2<p<R, 0 i
and zero otherwise. Note that the cutoffs dfp) do not To obtain a finite value we must choose reasonable time
create a spurious contribution at high wave number to theutoffs r; and 7,, and, following Pullinet al1° we choose
form of the cross spectrum as we only ugl@) to evaluate ar;=1 andr,=(I'/v) ?*10R?/(4v).

g% dg gzd(g
2A2 A2

— - 4/3 9,72 ~

dr. (87)

1 T
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FIG. 1. The 1D cospectrum contributed by the axial velocity. Dasheéd3 FIG. 2. The 1D cospectrum contributed by the axial velocity compared with
component. Dotted;-7/3 component. Solid, both components. experiment. Dashed, Mylardski and Warhaft de&ef. 5. Solid, axial con-

tribution from model.

and Warhatt it is necessary to convert our shell-summedsor |arge p. This method of numerical integration was first

cross spectrum to a one-dimensional cospectrum. The apprgsed to evaluate the energy spectrum and reasonable agree-

priate relationship is derived in Appendix A, ment with Lundgren’s asymptotic restivas found. In the
1 3 [ k24K case of an initial condition for the vortex core of a line vor-
Cu,c(kg) = Zf TR Fuic(k) dk. (89 tex (77) the situation is simplified because tHpintegral can
! k3 be performed explicitly. The resulting contribution to the
We note the factor of 2 in the relationship between the oneone-dimensional cospectrum for this initial condition is
dimensional cross spectrum and cospectrum. shown on a Iog-log scale in Fig. 5 compared with the axial

It is interesting to observe that if the one-dimensionalcontribution. o _
cospectrum had been measured in the same direction as the Note that the planar contribution is not of one sign, un-

velocity component usedu) [i.e., if Ci(’jc(ki) had been like the experimental result. This is typical of results ob-
1

h h a1 veloci d i i tained for other choices of the initial condition for the vortex
measured then the axial velocity would give no contribu- core. Also the upper cutoff in time has an effect on this

tion because the axial velocity does not generate small Scat‘nontribution and if a cutoff is not used the core winds up
scalar structure in the axial direction. The normalized one- '

dimensional cospectrum contributed by the axial velocity,
obtained from Eqs(84) and(88), is shown in Fig. 1 where

the k=53 and thek™ " terms are also shown separately for
comparison. In Fig. 2 this contribution to the cospectrum is
compared with the experimental result of Mydlarski and
Warhaft. Note that the exact magnitude of this contribution is
dependent on several rough estimates made above, for exs
ample the value chosen fes. In Fig. 3 the same compari- >
son is made, except now the experimental data has beerf‘:w
smoothed using a one-third octave filter. The same compari-_
son is again shown in Fig. 4 in compensated form, where the .
spectra have been multiplied bi@)?2. o

B. Contribution of the planar velocity

Equation(65) for the contribution to the cross spectrum
of the velocity in the plane of the vortex cannot in general be

evaluated analytically or asymptotically. It was instead 107 10 107 10°
evaluated numerically for different choices of the initial con- ko
dition for the vortex core. A,lfombmatlon of the monte-carlo FIG. 3. The 1D cospectrum contributed by the axial velocity compared with

integration routine “Vegas and the double exponentigl the 1/3 octave filtered experimental data. Dashed, axial contribution from
routine of Oour® was used. The double exponential routine model. Solid, 1/3 octave filtered Mydlarski and Warhaft d&ef. 5.
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quadrature spectrum was found to be zero in agreement with
experiment. Asymptotic expressions were found for the
cospectrum contributed by the axial velocity of the vortex,
with the leading order term showingka °° range. The next
order term had &~ " range, but its coefficient could be of
either sign or zero. It is interesting that Mydlarski and
WarhafP find a spectral exponent close 2, which lies in
between those of the leading-order terms contributed by the
axial velocity in the present model. The contribution to the
cospectrum from the velocity in the plane of the vortex was
also calculated, but some integrals had to be evaluated nu-
merically, and a specific vortex core had to be chosen. The
resulting contribution did not remain of one sign, and was
comparable in magnitude to the axial contribution. The form
. _ o T of the contribution from the planar velocity depended on the
107 10° 107 107 10° choice of vortex core and time cutoff, and so a more physical
k;n contribution to the cospectrum might result from an en-

FIG. 4. The 1D cospectrum contributed by the axial velocity compared withSemble of different vortex cores and lifetimes.

experiment in compensated form. Solid, axial contribution from model.
Dashed, Mydlarski and Warhaft datgef. 5. ACKNOWLEDGMENTS
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has two distinct ranges. The first ranger low wave num-  Science Foundation under Grant No. CTS-9978551.
ben is ak~ ! range and is of one sign. At higher wave num-
ber there is an oscillatory spectrum withka®? envelope. APPENDIX A: PROPERTIES OF THE
However, both of these ranges are specific to this choice of ELOCITY-SCALAR CROSS SPECTRUM FOR
Q) because the integral it§ is not in general dominated by a ISOTROPIC TURBULENCE WITH A MEAN
. . . . . SCALAR GRADIENT
point of stationary phase, and its form varies for different

0’s. The velocity field is assumed to be statistically isotropic
and homogeneous. The scalar field is statistically homoge-
V. CONCLUSION neous with a mean scalar gradient given by the vegtar

We defineF;(k) to be the Fourier transform d&®, .(r),
The stretched vortex model has been used to calculate '

the velocity-scalar cross spectrum for isotropic turbulence in

1 :
. — —iker
the presence of an imposed mean scalar gradient. The Fi(k) (277)3f Ruc(r)e dr. (AL)

ThenZ; is a first order tensor that is axisymmetric abgut
and so must have the following form:
Fi(k)=Ak+Bpui, (A2)

whereA andB are functions ofk;u;, k and w. Using the
incompressibility of the velocity field we have that

Using this relation, and defining=—A k2/(,ujkj), we find
that

Kjsj
Fi(k)=D(Kpr.Kjpap) | = ?ki). (A%)
10° D\ We will now use the fact that the equation governing the
scalar, Eq(8), is linear. If the spectrum is measured after a
10" \ sufficiently long time, the effect of initial fluctuations about
R o ], oo the mean gradient will have decayed to zero, and the scalar
10 1072 107 10° must have a linear dependence on the vegtorAlso F; (k)
ks depends linearly on the scalar, and so must also depend lin-

FIG. 5. Comparison of the 1D cospectrum contributed by the axial velocityearly ong; . ThereforeD = D(k) is a function ofk, and has

and the planar velocity. Solid, planar contribution. Dashed, axial contribu-10 (_jeper_1dence ok i or w. A Sim"ar analysis to the above
tion. is given in Herr, Wang and Collins.
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We will now use this simplified form forF;(k) to relate  making an assumption about the statistical distribution of
the shell-summed and one-dimensional cross spectra. Waitial conditions. The orientation average may be performed
specialize to the case whepe;=u and u,=u3=0, and immediately using the integralgl) to give
consider the one-dimensional cross spectrum irktheirec-

tion. Then it is easy to show that EL(K) = < J j f J 2 &(x1) ¢, (x+1.1)
Fld(k3)—f f Fi(k) dk, dks. (A5)
X —iker .
Changing to polar coordinatédsg =k cosé and k,= « sin 6, ¢ e > Ic "2

and performing the integral givesF ;%(ks) = F{(ks) =0.
Making a further change of integratlon variables fratok ~ The terms in the integrand involving, andc, have nox,

gives dependence and so were dealt with in PL. We will consider
2 Ee, the contribution fromc;. We assumev=D and use
o] 3 .
Fﬁidc(k3)=,u T fk D(k) | k+ m dk. (A6) solution (22) for c3. Then we have that

X,t) Ca(X+r,t exp(—2at) (Xgrz+x 2a’t
We can also find the shell-summed cross spectrum in terms Go(x) Cal )= expl - ) (X3l 3) "

of D(k) as follows: X exp(—at) sinh(at) (Xzug(x+r,t)

+ Xz Ug(X,t) +rzug(x,t))+u?a?
Fuek= [ A a0, (A7) AU T U0 T
s x sint?(at) us(x,t) us(x+r,t). (B3
Using spherical polar coordinates we find trﬁgzc(k)

Fu,e(K)=0, and We will now show that the first term in Eq22) does not

contribute to the scalar spectrum. Noting tla{x) has no
X3 dependence, terms in E@3) that are linear irx; will be

Fuc(k)= ?kz D(k) u. (A8)  eliminated upon integration oves. Also terms that are lin-
ear inuz will be eliminated by performing the average over
Then comparing EqgA6) and (A8) we have that initial conditions. The term involving will not contribute
3 (o k2+K2 to the high wave number spectrum. Therefore the only con-
ijc(k3)= §f TgFulc(k) dk. (A9)  tribution comes from the second term of Eg2). We again
ks simplify by replacing the average over initial conditions with

Finally we can easily show that the quadrature spectrum@ne particular initial condition.

1°c(ks), must be zero. Noting thafi(k) is the Fourier Changing to Fourier space using E@3), and after
transform of a real function gives;(—k) =7 (k). Also Eq. some algebra, we find
(A4) implies thatF;(— k)= F;(k), and soD (k) is real, and N(2m)2 (te (2
the quadrature spectrum must be zero. e,(K)= J’ J w?a 2

X sint?(at) 05 U3 k d6, S(t) dt. (B4

APPENDIX B: CONTRIBUTION TO THE SCALAR o o , , ,
SPECTRUM FROM c; This is very similar to expressioi@6) for the axial contribu-

tion to the cross spectrum, except for a factor in the integrand

In their calculation of the scalar spectrum PL assumedf — u/a sinh(@t). Following a similar analysis to Secs. IlIC

that the scalar had no; dependence. We will now consider and Il D, and keeping terms in the integrand@fr 1), we
the effect of anx; dependence in the particular case when thefind
scalar initial condition is given by a gradient in the lab
frame. An expression for the scalar spectrum is given by (k)= 27 u®N k‘la‘3exp( 2 vk?
replacingEj; u-(x,t) with ¢c(x,t) in Eq. (39), Cs 3a

Eolk)= (277) <<ff f fc(x teix+rh ><ré:l J’:p|f)§1°)(p)|2dp

. 2 2
e kT dx dt dr dQ, . (B1) L AN k5’3a8/3exp( _ vk
VO 9 3a
IC
We decompose(x,t) using Eq.(18), and assume the initial w s [© 2304 ()(0) *
conditions(19). We setc’ (x,0)=0, because our solutidi22) X2 0 [A(p)*“Re(Uy"(p)PR) dp.  (BS)

for c5 is only valid for a gradient initial condition. This ap-
proximation was not necessary in the case of the cross spec- Thus the new contribution tB. is a combination ok !
trum, where we were able to eliminate thecontribution by — and k> power laws in a certain range. The wave number
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